I recently did a lesson on the basics of reading and writing in Geometry.  You know, dry, dull stuff...what's a point, line, ray, segment, how do you write an angle, what types of angles are there, and so on.

While preparing all of this information I was thinking:

How can I expose misconceptions about such material so they learn it?

Remember, just seeing the facts is comfortable for students, but not only do they not learn, they somehow find confirmation that their held misconceptions are in fact correct.  It's not as wild as you think, and it's not limited to kids.  I took a psychology class in college and was unknowingly part of an experiment.  I was asked a question, a seemingly throw-away type.  But it's trickier than it looks and nearly everybody answers wrong.  But it was of such little consequence that I did not remember my answer (you weren't supposed to).  Then, I was shown the correct answer and asked if that's what I had said.

Turns out the vast majority of people mis-remember that they answered correctly.  That is, they answered it wrong, but it's hard for us to imagine we're wrong, and they latch on the to the idea they were right...even when it's quite obvious they weren't.

This is so powerful that to be wrong and be aware of it, being confronted with things we don't understand and such, is very uncomfortable and unpleasant.  Yet, that's what is needed for learning to occur.  (And I'm talking the type of knowledge where understanding is paramount to success.)

My assertions are that what Derek Muller has unconverted here goes beyond science and film.

Students are not void of knowledge in your content.  They have ideas.  Teaching them is more like part repair work on the frame of a house before roofing.  Presenting students with correct information will not shore up their misunderstandings.

Also, students need to experience some level of cognitive discord.  In education, nearly all of the "best practices" work hard to do the opposite of this.  There are things like Content/Language Objectives, or SWBAT, word walls and graphic organizers.  I'm not saying those things don't have their place, but that's it, they have a place when balanced with quality instruction that explores misconceptions and such.

When you can deliver a lesson that explores the misconceptions the students will be confused.  But if it is student lead, they won't be lost.  The amount of mental effort required is much higher than a typical delivery of information and note-taking style.  However, they'll learn!

So, how to create this tension and expose misconception over some pretty dull information?

Start by asking questions and exploring answers.  Do not use your authority in the subject to state if an answer is right or wrong, initially.  Instead, have students share their thinking on what other students are saying.

For example, a particularly nasty question that dealt with the boring definition-based lesson I just gave was, "What is an angle?"  To someone versed in geometry, this isn't a big deal.  But to a kid who hasn't taken geometry, this is monumentally difficult to describe.   The best response I received was, "Measuring the space between two lines."  So, of course, I drew to parallel lines and asked for explanation.

 

Now, this is just something I wonder, but is it possible that on these boring, just the facts, type lessons that exposing misconception is more important than ever?

Regardless of how that fleshes out, challenge yourself to challenge the thinking of students by exposing misconception through dialogue.  Be brave enough to explore misconception and encourage students to seek understanding by challenging the think of themselves and others.  If students understand the purpose of your methods, they'll play along.

Give it a shot, let me know how it goes.

Once again, thank you for your time.

One Response

  1. Great video! Teachers forget that they learned , say, the first & second laws of Newton and have gone over the topic many, many times. The students who are learning science for the first time need the topics presented many times in different ways.
    I’m a late learner of Matrix Math. I have to re-learn the topics again and again.
    Same thing with discrete math.