Why Some
Rational Numbers are Non-Terminating Decimals
I’d like to explore the relationship between
non-terminating, but repeating, decimals and their rational equivalents. The topic is worth exploration because it can
help provide insight as to why something like 0.99999999999999999… is equal to
10, not just approximately 10, kind of.
The moment you stop writing the 9s, though, it is no longer equal to
ten. Through this exploration I hope
you’ll see why these things occur.
Beyond that,
I think it is very cool to explain something that has bugged me for years. (For the sake of simplicity, we will only consider proper
fractions that are fully reduced.)
Why 1/3 is 0.3333333333 … repeating infinitely is
easily enough seen by dividing 1 by three with long division. You end up with a loop of 10 divided by 3,
which always has a remainder of one. But
why does such a nice and easy rational number end up with a non-terminating decimal
equivalent, when some other, ugly numbers, like 7/32 are terminating?
For the sake of clarity, to convert a fraction into
a decimal you divide the numerator by the denominator. So,
¼
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa
aaaaaaaaWdbiaa=Xlaaaa@384C@
would be 0.25 as shown below:
1
4
= 4
0.25
1.00
− 8
_
20
− 20
_
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGinaaaacqGH9aqpcaaI0aWaaOraaqaabeqaaiaaigda
caGGUaGaaGimaiaaicdaaeaadaadaaqaaiabgkHiTiaaiIdaaaaaba
GaaGPaVlaaykW7caaMc8UaaGPaVlaaikdacaaIWaaabaWaaWaaaeaa
cqGHsislcaaIYaGaaGimaaaaaaqaaiaaicdacaGGUaGaaGOmaiaaiw
daaaaaaa@4B08@
I am going to make a few points that will be pulled
together to show why some rational numbers are non-terminating decimals.
Point
One:
The first big thing to note is that, as you probably
already know, 0.25 is the same as
25
100
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIYaGaaGynaaqaaiaaigdacaaIWaGaaGimaaaaaaa@39B0@
. This
ratio is equal:
1
4
=
25
100
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGinaaaacqGH9aqpdaWcaaqaaiaaikdacaaI1aaabaGa
aGymaiaaicdacaaIWaaaaaaa@3C40@
.
Similarly,
0.157 =
157
1 , 000
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaac6
cacaaIXaGaaGynaiaaiEdacqGH9aqpdaWcaaqaaiaaigdacaaI1aGa
aG4naaqaaiaaigdacaGGSaGaaGimaiaaicdacaaIWaaaaiaac6caaa
a@4139@
However,
0.
13
¯
≠
13
100
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaac6
cadaqdaaqaaiaaigdacaaIZaaaaiabgcMi5oaalaaabaGaaGymaiaa
iodaaeaacaaIXaGaaGimaiaaicdaaaaaaa@3E69@
.
Point
Two:
Decimals are equivalent to fractions with
denominators that are a power of ten.
Consider the following decimal, 0.111111… repeating.
The first decimal, 0.1 is
1
10
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGymaiaaicdaaaaaaa@3836@
.
The second decimal, 0.11 is
1
10
+
1
100
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGymaiaaicdaaaGaey4kaSYaaSaaaeaacaaIXaaabaGa
aGymaiaaicdacaaIWaaaaaaa@3C12@
, the third, 0.111 is
1
10
+
1
100
+
1
1000
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGymaiaaicdaaaGaey4kaSYaaSaaaeaacaaIXaaabaGa
aGymaiaaicdacaaIWaaaaiabgUcaRmaalaaabaGaaGymaaqaaiaaig
dacaaIWaGaaGimaiaaicdaaaaaaa@40A8@
, and so on.
Then
0.1111 =
1
10
+
1
100
+
1
1 , 000
+
1
10 , 000
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaac6
cacaaIXaGaaGymaiaaigdacaaIXaGaeyypa0ZaaSaaaeaacaaIXaaa
baGaaGymaiaaicdaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGymai
aaicdacaaIWaaaaiabgUcaRmaalaaabaGaaGymaaqaaiaaigdacaGG
SaGaaGimaiaaicdacaaIWaaaaiabgUcaRmaalaaabaGaaGymaaqaai
aaigdacaaIWaGaaiilaiaaicdacaaIWaGaaGimaaaaaaa@4CB7@
.
This means that decimals, rewritten as fractions,
all have denominators that are an exact power of ten.
So,
0.1111 =
1
10
+
1
100
+
1
1 , 000
+
1
10 , 000
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaac6
cacaaIXaGaaGymaiaaigdacaaIXaGaeyypa0ZaaSaaaeaacaaIXaaa
baGaaGymaiaaicdaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGymai
aaicdacaaIWaaaaiabgUcaRmaalaaabaGaaGymaaqaaiaaigdacaGG
SaGaaGimaiaaicdacaaIWaaaaiabgUcaRmaalaaabaGaaGymaaqaai
aaigdacaaIWaGaaiilaiaaicdacaaIWaGaaGimaaaaaaa@4CB7@
, which is
0.1111 =
1
10
1
+
1
10
2
+
1
10
3
+
1
10
4
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaac6
cacaaIXaGaaGymaiaaigdacaaIXaGaeyypa0ZaaSaaaeaacaaIXaaa
baGaaGymaiaaicdadaahaaWcbeqaaiaaigdaaaaaaOGaey4kaSYaaS
aaaeaacaaIXaaabaGaaGymaiaaicdadaahaaWcbeqaaiaaikdaaaaa
aOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGymaiaaicdadaahaaWcbe
qaaiaaiodaaaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGymaiaa
icdadaahaaWcbeqaaiaaisdaaaaaaOGaaiOlaaaa@4B7B@
Let’s see what that would look like for a
terminating decimal, like
1
8
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGioaaaacaGGSaaaaa@3834@
which is 0.125.
0.125 =
1
10
+
2
100
+
5
1 , 000
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaac6
cacaaIXaGaaGOmaiaaiwdacqGH9aqpdaWcaaqaaiaaigdaaeaacaaI
XaGaaGimaaaacqGHRaWkdaWcaaqaaiaaikdaaeaacaaIXaGaaGimai
aaicdaaaGaey4kaSYaaSaaaeaacaaI1aaabaGaaGymaiaacYcacaaI
WaGaaGimaiaaicdaaaaaaa@4606@
. If you’re unsure of this being true, I’ll get
common denominators and we will see the sum is
125
1 , 000
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaGaaGOmaiaaiwdaaeaacaaIXaGaaiilaiaaicdacaaIWaGaaGim
aaaacaGGUaaaaa@3C88@
1
10
⋅
100
100
+
2
100
10
10
+
5
1 , 000
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGymaiaaicdaaaGaeyyXICneeG+aaaaaaivzKbWdbmaa
laaabaGaaGymaiaaicdacaaIWaaabaGaaGymaiaaicdacaaIWaaaa8
aacqGHRaWkdaWcaaqaaiaaikdaaeaacaaIXaGaaGimaiaaicdaaaWd
bmaalaaabaGaaGymaiaaicdaaeaacaaIXaGaaGimaaaapaGaey4kaS
YaaSaaaeaacaaI1aaabaGaaGymaiaacYcacaaIWaGaaGimaiaaicda
aaaaaa@4D68@
100
1 , 000
+
200
1 , 000
+
5
1 , 000
=
125
1 , 000
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaGaaGimaiaaicdaaeaacaaIXaGaaiilaiaaicdacaaIWaGaaGim
aaaacqGHRaWkdaWcaaqaaiaaikdacaaIWaGaaGimaaqaaiaaigdaca
GGSaGaaGimaiaaicdacaaIWaaaaiabgUcaRmaalaaabaGaaGynaaqa
aiaaigdacaGGSaGaaGimaiaaicdacaaIWaaaaiabg2da9maalaaaba
GaaGymaiaaikdacaaI1aaabaGaaGymaiaacYcacaaIWaGaaGimaiaa
icdaaaGaaiOlaaaa@4F6B@
Decimals are fractions with a denominator that’s an
exact power of ten.
Point
Three:
Let us consider a different method of converting
fractions into decimals, to shed light on why non-terminating decimals spring
forth from some rational numbers.
Let us convert one-fifth into a decimal by setting
up a ratio where the denominator must be a power of ten.
1
5
=
x
10
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGynaaaacqGH9aqpdaWcaaqaaiaadIhaaeaacaaIXaGa
aGimaaaaaaa@3B09@
The
power of ten is easy here because five divides into ten evenly.
Changing the denominator into ten by multiplying by two over two:
2
2
⋅
1
5
=
x
10
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeeG+aaaaaai
vzKbWdbmaalaaabaGaaGOmaaqaaiaaikdaaaWdaiabgwSixpaalaaa
baGaaGymaaqaaiaaiwdaaaGaeyypa0ZaaSaaaeaacaWG4baabaGaaG
ymaiaaicdaaaaaaa@4114@
Give
us:
2
10
=
x
10
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIYaaabaGaaGymaiaaicdaaaGaeyypa0ZaaSaaaeaacaWG4baabaGa
aGymaiaaicdaaaaaaa@3BC0@
, so
1
5
=
2
10
, or 0 .2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGynaaaacqGH9aqpdaWcaaqaaiaaikdaaeaacaaIXaGa
aGimaaaacaGGSaGaaeiiaiaab+gacaqGYbGaaeiiaiaabcdacaqGUa
GaaeOmaaaa@40BE@
.
Let’s see how this works for fraction like
1
8
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGioaaaacaGGUaaaaa@3836@
1
8
=
x
10
?
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGioaaaacqGH9aqpdaWcaaqaaiaadIhaaeaacaaIXaGa
aGimamaaCaaaleqabaGaai4paaaaaaaaaa@3BFC@
The smallest power of ten that eight divides into is
1,000. The smallest that 16 divides into
is 10,000, and the smallest that 32 divides into is 100,000. We will explore how to see that in a moment,
but let’s finish 1/8th first.
1
8
=
x
1000
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGioaaaacqGH9aqpdaWcaaqaaiaadIhaaeaacaaIXaGa
aGimaiaaicdacaaIWaaaaaaa@3C80@
125
125
⋅
1
8
=
x
1000
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeeG+aaaaaai
vzKbWdbmaalaaabaGaaGymaiaaikdacaaI1aaabaGaaGymaiaaikda
caaI1aaaa8aacqGHflY1daWcaaqaaiaaigdaaeaacaaI4aaaaiabg2
da9maalaaabaGaamiEaaqaaiaaigdacaaIWaGaaGimaiaaicdaaaaa
aa@457F@
1
8
=
125
1000
,
1
8
= 0.125
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGioaaaacqGH9aqpdaWcaaqaaiaaigdacaaIYaGaaGyn
aaqaaiaaigdacaaIWaGaaGimaiaaicdaaaGaaiilaiaaykW7caaMc8
+aaSaaaeaacaaIXaaabaGaaGioaaaacqGH9aqpcaaIWaGaaiOlaiaa
igdacaaIYaGaaGynaaaa@47B3@
.
If we look at this in terms of factors and
exponents, we can see an interesting occurrence. The column on the left will be a denominator
of two and the column on the right will be the smallest power of ten we can use,
set up as a ratio. Then we’ll factor
these and gain valuable, hopefully, insight.
Un-factored
Factored
Denominator
2
Denominator
10
Denominator
2
Denominator
10
1
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGOmaaaaaaa@377E@
x
10
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
WG4baabaGaaGymaiaaicdaaaaaaa@3879@
1
2
1
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGOmamaaCaaaleqabaGaaGymaaaaaaaaaa@3866@
x
(
2 ⋅ 5
)
1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
WG4baabaWaaeWaaeaacaaIYaGaeyyXICTaaGynaaGaayjkaiaawMca
amaaCaaaleqabaGaaGymaaaaaaaaaa@3D39@
1
4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGinaaaaaaa@3780@
x
100
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
WG4baabaGaaGymaiaaicdacaaIWaaaaaaa@3933@
1
2
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGOmamaaCaaaleqabaGaaGOmaaaaaaaaaa@3867@
x
(
2 ⋅ 5
)
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
WG4baabaWaaeWaaeaacaaIYaGaeyyXICTaaGynaaGaayjkaiaawMca
amaaCaaaleqabaGaaGOmaaaaaaaaaa@3D3B@
1
8
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGioaaaaaaa@3784@
x
1000
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
WG4baabaGaaGymaiaaicdacaaIWaGaaGimaaaaaaa@39ED@
1
2
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGOmamaaCaaaleqabaGaaG4maaaaaaaaaa@3868@
x
(
2 ⋅ 5
)
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
WG4baabaWaaeWaaeaacaaIYaGaeyyXICTaaGynaaGaayjkaiaawMca
amaaCaaaleqabaGaaG4maaaaaaaaaa@3D3C@
1
16
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGymaiaaiAdaaaaaaa@383D@
x
10 , 000
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
WG4baabaGaaGymaiaaicdacaGGSaGaaGimaiaaicdacaaIWaaaaaaa
@3B57@
1
2
4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGOmamaaCaaaleqabaGaaGinaaaaaaaaaa@3869@
x
(
2 ⋅ 5
)
4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
WG4baabaWaaeWaaeaacaaIYaGaeyyXICTaaGynaaGaayjkaiaawMca
amaaCaaaleqabaGaaGinaaaaaaaaaa@3D3D@
To
easily see how to make
1
16
=
1
10 , 000
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGymaiaaiAdaaaGaaGPaVlaaykW7cqGH9aqpdaWcaaqa
aiaaigdaaeaacaaIXaGaaGimaiaacYcacaaIWaGaaGimaiaaicdaaa
aaaa@4177@
, let’s look at the factored form.
1
2
4
=
1
(
2 ⋅ 5
)
4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGOmamaaCaaaleqabaGaaGinaaaaaaGccaaMc8UaaGPa
Vlabg2da9maalaaabaGaaGymaaqaamaabmaabaGaaGOmaiabgwSixl
aaiwdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaisdaaaaaaaaa@4393@
Do
you see that if to make 24 =
(
2 ⋅ 5
)
4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
aIYaGaeyyXICTaaGynaaGaayjkaiaawMcaamaaCaaaleqabaGaaGin
aaaaaaa@3C30@
, we would need to multiply it by
54 ?
5
4
5
4
⋅
1
2
4
=
1
(
2 ⋅ 5
)
4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeeG+aaaaaai
vzKbWdbmaalaaabaGaaGynamaaCaaaleqabaGaaGinaaaaaOqaaiaa
iwdadaahaaWcbeqaaiaaisdaaaaaaOWdaiabgwSixpaalaaabaGaaG
ymaaqaaiaaikdadaahaaWcbeqaaiaaisdaaaaaaOGaaGPaVlaaykW7
cqGH9aqpdaWcaaqaaiaaigdaaeaadaqadaqaaiaaikdacqGHflY1ca
aI1aaacaGLOaGaayzkaaWaaWbaaSqabeaacaaI0aaaaaaaaaa@4B8E@
Another way to see this by setting up an equation,
for the denominators:
2
4
n =
2
4
×
5
4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCa
aaleqabaGaaGinaaaakiaad6gacqGH9aqpcaaIYaWaaWbaaSqabeaa
caaI0aaaaOGaey41aqRaaGynamaaCaaaleqabaGaaGinaaaaaaa@3F13@
Solving
by dividing by n we arrive at:
n =
5
4
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2
da9iaaiwdadaahaaWcbeqaaiaaisdaaaGccaGGUaaaaa@3A56@
Then:
1
16
⋅
5
4
5
4
=
x
10 , 000
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGymaiaaiAdaaaGaeyyXIC9aaSaaaeaacaaI1aWaaWba
aSqabeaacaaI0aaaaaGcbaGaaGynamaaCaaaleqabaGaaGinaaaaaa
GccqGH9aqpdaWcaaqaaiaadIhaaeaacaaIXaGaaGimaiaacYcacaaI
WaGaaGimaiaaicdaaaaaaa@4465@
1
16
=
625
10 , 000
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGymaiaaiAdaaaGaeyypa0ZaaSaaaeaacaaI2aGaaGOm
aiaaiwdaaeaacaaIXaGaaGimaiaacYcacaaIWaGaaGimaiaaicdaaa
aaaa@3FE1@
Un-factored
Factored
Denominator
2
Denominator
10
Denominator
2
Denominator
10
1
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGOmaaaaaaa@377E@
5
10
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aI1aaabaGaaGymaiaaicdaaaaaaa@383B@
0.5
1
2
1
⋅
5
1
5
1
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGOmamaaCaaaleqabaGaaGymaaaaaaGccqGHflY1qqa6
daaaaaGuLrgapeWaaSaaaeaacaaI1aWaaWbaaSqabeaacaaIXaaaaa
GcbaGaaGynamaaCaaaleqabaGaaGymaaaaaaaaaa@404C@
5
1
(
2 ⋅ 5
)
1
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aI1aWaaWbaaSqabeaacaaIXaaaaaGcbaWaaeWaaeaacaaIYaGaeyyX
ICTaaGynaaGaayjkaiaawMcaamaaCaaaleqabaGaaGymaaaaaaaaaa@3DEE@
1
4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGinaaaaaaa@3780@
25
100
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIYaGaaGynaaqaaiaaigdacaaIWaGaaGimaaaaaaa@39B1@
0.25
1
2
2
⋅
5
2
5
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGOmamaaCaaaleqabaGaaGOmaaaaaaGccqGHflY1qqa6
daaaaaGuLrgapeWaaSaaaeaacaaI1aWaaWbaaSqabeaacaaIYaaaaa
GcbaGaaGynamaaCaaaleqabaGaaGOmaaaaaaaaaa@404F@
5
2
(
2 ⋅ 5
)
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aI1aWaaWbaaSqabeaacaaIYaaaaaGcbaWaaeWaaeaacaaIYaGaeyyX
ICTaaGynaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaaaa@3DF0@
1
8
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGioaaaaaaa@3784@
125
1000
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaGaaGOmaiaaiwdaaeaacaaIXaGaaGimaiaaicdacaaIWaaaaaaa
@3B26@
0.125
1
2
3
⋅
5
3
5
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGOmamaaCaaaleqabaGaaG4maaaaaaGccqGHflY1qqa6
daaaaaGuLrgapeWaaSaaaeaacaaI1aWaaWbaaSqabeaacaaIZaaaaa
GcbaGaaGynamaaCaaaleqabaGaaG4maaaaaaaaaa@4052@
5
3
(
2 ⋅ 5
)
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aI1aWaaWbaaSqabeaacaaIZaaaaaGcbaWaaeWaaeaacaaIYaGaeyyX
ICTaaGynaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaaaaa@3DF2@
1
16
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGymaiaaiAdaaaaaaa@383D@
625
10 , 000
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aI2aGaaGOmaiaaiwdaaeaacaaIXaGaaGimaiaacYcacaaIWaGaaGim
aiaaicdaaaaaaa@3C95@
0.0625
1
2
4
⋅
5
4
5
4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGOmamaaCaaaleqabaGaaGinaaaaaaGccqGHflY1qqa6
daaaaaGuLrgapeWaaSaaaeaacaaI1aWaaWbaaSqabeaacaaI0aaaaa
GcbaGaaGynamaaCaaaleqabaGaaGinaaaaaaaaaa@4055@
5
4
(
2 ⋅ 5
)
4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aI1aWaaWbaaSqabeaacaaI0aaaaaGcbaWaaeWaaeaacaaIYaGaeyyX
ICTaaGynaaGaayjkaiaawMcaamaaCaaaleqabaGaaGinaaaaaaaaaa@3DF4@
Let’s
consider how this would work for a number that’s not a perfect power of 2, like
20.
1
20
=
x
10
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaGOmaiaaicdaaaGaeyypa0ZaaSaaaeaacaWG4baabaGa
aGymaiaaicdaaaaaaa@3BC0@
1
(
2
2
⋅ 5
)
=
x
(
2 ⋅ 5
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaWaaeWaaeaacaaIYaWaaWbaaSqabeaacaaIYaaaaOGaeyyX
ICTaaGynaaGaayjkaiaawMcaaaaacqGH9aqpdaWcaaqaaiaadIhaae
aadaqadaqaaiaaikdacqGHflY1caaI1aaacaGLOaGaayzkaaaaaaaa
@4464@
Keep in mind, we’re not just trying to get the
denominators equal, we want them to be equal and a perfect power of 10. (So a denominator of 20 will not work,
because decimals are all powers of ten.)
If you see the factors of 20 have 22 ,
which tells us we are going to have a denominator of 102 , 100.
1
(
2
2
⋅ 5
)
⋅
5
5
=
x
(
2 ⋅ 5
)
⋅
2 ⋅ 5
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaWaaeWaaeaacaaIYaWaaWbaaSqabeaacaaIYaaaaOGaeyyX
ICTaaGynaaGaayjkaiaawMcaaaaacqGHflY1qqa6daaaaaGuLrgape
WaaSaaaeaacaaI1aaabaGaaGynaaaapaGaeyypa0ZaaSaaaeaacaWG
4baabaWaaeWaaeaacaaIYaGaeyyXICTaaGynaaGaayjkaiaawMcaaa
aacqGHflY1peqbaeqabiqaaaqaaaqaaiaaikdacqGHflY1caaI1aaa
aaaa@50A1@
5
100
=
x
100
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aI1aaabaGaaGymaiaaicdacaaIWaaaaiabg2da9maalaaabaGaamiE
aaqaaiaaigdacaaIWaGaaGimaaaaaaa@3D37@
And
1/20th is 0.05, so we’re golden!
By using this new method, we can see that we must
change the denominator of our original rational number into a power of ten in
order for it to be written as a decimal (since decimals are all powers of ten).
The Pay-Off
Given these three points I will show you why some
decimals are non-terminating.
Short-story long here, perhaps, but the purpose is not for
answer-getting, but to explore things mathematically and discover understanding
in things previously mysterious.
Let’s take 1/3 for starters. To rewrite one-third as a decimal, accurately,
without truncating the decimal expansion, we need to write multiply three by
itself so it will be a power of 10.
1
3
n
=
x
10
n
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaaG4mamaaCaaaleqabaGaamOBaaaaaaGccqGH9aqpdaWc
aaqaaiaadIhaaeaacaaIXaGaaGimamaaCaaaleqabaGaamOBaaaaaa
aaaa@3D51@
This is impossible.
The easiest reason why is that the powers of three end in, 1, 3, 7, 9
only. There is no power of three that
ends in zero, and all powers of ten end in zero.
It turns out that all rational numbers, with
denominators that have a prime factor other than 2 or 5 suffer such a fate. Seven ends in 1, 3, 7 or 9, only. Eleven only ends in 1.
Decimals compare a whole number to a power of
ten. There is no way to multiply the
prime numbers, other than 2 and 5, by a power that will result in a whole
number.
Let us consider another method of explanation of why
3, for example, will never be a power of 10.
3
x
=
10
x
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaCa
aaleqabaGaamiEaaaakiabg2da9iaaigdacaaIWaWaaWbaaSqabeaa
caWG4baaaaaa@3B8D@
Taking
the logarithm of both sides gives us:
log
3
x
= log
10
x
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+
gacaGGNbGaaG4mamaaCaaaleqabaGaamiEaaaakiabg2da9iGacYga
caGGVbGaai4zaiaaigdacaaIWaWaaWbaaSqabeaacaWG4baaaaaa@412D@
x log 3 = x log 10
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiGacY
gacaGGVbGaai4zaiaaiodacqGH9aqpcaWG4bGaciiBaiaac+gacaGG
NbGaaGymaiaaicdaaaa@40C9@
Because
log10 = 1,
x log 3 = x
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiGacY
gacaGGVbGaai4zaiaaiodacqGH9aqpcaWG4baaaa@3C84@
Solving
for x
x log 3 − x = 0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiGacY
gacaGGVbGaai4zaiaaiodacqGHsislcaWG4bGaeyypa0JaaGimaaaa
@3E2B@
x (
log 3 − 1
) = 0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaabm
aabaGaciiBaiaac+gacaGGNbGaaG4maiabgkHiTiaaigdaaiaawIca
caGLPaaacqGH9aqpcaaIWaaaaa@3F72@
Log3
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa
aaaaaaaaWdbiaa=nbiaaa@37C3@
1 cannot equal zero because 101 is
not 3, so x must be zero.
Plugging
that value into our original equation we see that only power of 3 and 10 that
yields equal value is zero.
3
0
=
10
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaCa
aaleqabaGaaGimaaaakiabg2da9iaaigdacaaIWaWaaWbaaSqabeaa
caaIWaaaaaaa@3B07@
Conclusion:
I hope you really see the reason why rational
numbers become non-terminating decimals is because of the nature of what
decimals are. They are powers of
10. There are not any whole number
multiples of prime numbers, other than two or five that produce a power of
ten. So you cannot covert a seven into a
power of ten, other than the power of zero.
Again, the purpose of this exploration was just
that, to explore the math behind something we just gloss over and hopefully
make connections and other such things.
This is not an attempt at a proof, but rather a
justification and explanation. Let me
know what works and what doesn’t work for you.
As always, thanks for reading.
VIDEO