Below you will find the Big Idea, Key Knowledge and Pro-Tip.  Your job as the teacher is to make sure you students fully understand each.  When writing lessons and creating practice problems, or using the lessons provided here, always challenge and support the development of student conceptual foundations and their thinking.

Big Idea

  • Square roots are just numbers. Sometimes they can be rewritten without changing the exact value, but sometimes are the most accurate way of writing an irrational number.
  • Square roots can be read two ways:
    • If the area of a square is the radicand, how long is the side?
    • What squared is the radicand?

Key Knowledge

  • For students to be proficient with square roots they must know:
    • Perfect Squares (square numbers)
    • Prime numbers
    • Factoring

Pro-Tip

  • When simplifying square roots, students should factor the radicand to find the largest perfect square. Then, they rewrite the square root of the perfect square with the product of the irrational portion of the number.

Introduction/Background:  The topic of square roots is a great place to start High School level mathematics because the concept and notation used opens the door to many other topics.  A few things that square roots can introduce or enforce are:

  • Sets of numbers
  • Order of operations
  • Arithmetic with Rational and Irrational Numbers
  • Numeric and Algebraic connections to Geometry
  • How to read mathematical notation in multiple ways
  • Factoring
  • Prime numbers
  • Perfect Squares (square numbers)

This is a wonderful way to introduce the topic.  You can tell students,

We are starting the year with square roots because ...

By introducing square roots as a way to gain access and make connections with other math, the expectation that students are not learning a procedure in isolation is established.  Mathematics is a language and each part is connected to many others.

Key Question: Why are we learning square roots?

The Foundation and Basics:

Start square roots by examining the area of squares.  What makes a square a square is that all four sides are equal (and they form right angles).  The area of square A, with side lengths a, is of course, "a - squared."

square

The first way to think of square roots is to consider the language, Square Root.  A square, for our purposes, is a four sided shape with equal sides that are perpendicular.  A root is the basic cause, source or origin of something.  So a square root is the beginning of a square, which is a length.

Thus, the square root of 25 is 5.  If you have a length of five and build a square, the area will be 25.  The square root of 1 is 1, the square root of 9 is three, and so on.  This is a great time to introduce the unknown number x.  The length x will make a square of area "x - squared," regardless of what number x actually is.

These are examples of numbers that are perfect squares, or squares numbers.  Students should be well versed in square numbers up to 400.  A reference list that they maintain is a good idea (if you post one, their responsibility for learning is relieved, doing so is inadvisable.)

The radical symbol and radicand need to be understood in order for students to be able to read and understand the new way of thinking of square roots.

web teaching square roots

Radical symbol:  radicand goes here MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaabbaaaaaG+acXwDLbWdbeaacaqGYbGaaeyyaiaabsgacaqGPbGaae4yaiaabggacaqGUbGaaeizaiaabccacaqGNbGaae4BaiaabwgacaqGZbGaaeiiaiaabIgacaqGLbGaaeOCaiaabwgaaSWdaeqaaaaa@48B6@ 

Key Question:  What are square roots?

First Real Issue: The second way to think of a square root is as a number, that may or may not have a simpler way of being written.  The square root of 25 can be read as the number squared that is 25.  The square root of 9 is the number squared that is 9.

The number squared that is the radicand.

or

What squared is the radicand?

This second way is more powerful because it offers students an avenue of approach to simplify non-obvious radical expressions.

Consider 48 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaaI0aGaaGioaaWcbeaaaaa@3792@.  The radicand is not a perfect square.  Thus, this will be our first example of an irrational number.  (A number that cannot be written as a ratio of two integers.)  At some point students should understand that an irrational number cannot be accurately written in decimal notation.  The best way of writing this type of irrational number is with radical notation.

The key word when reading this radical expression with our second understanding is “SQUARED.”  We are looking for perfect squares, or square numbers.  If the radicand has factors that are square numbers, then it can be rewritten or simplified.  (Student need to understand that contextually, the word simplified in the context of square roots means to rewrite the expression so that the radicand does NOT contain factors that are square numbers.)

Our radicand here, 48, has multiple square factors, not considering 1.  We have 4 and 12, with 12 have 3 and 4, and also 16 and 3.  Factors are multiplicative parts of a larger number, numbers whose product is the original number.  So, to factor a number is to break the number into its multiplicative portions.

Key Questions:  (1) Why is it best practice, when simplifying a square root, to factor the radicand and look for the largest perfect square? (2)  List everything you know about the square root of x.

Arithmetic of Irrationals and Checking: In order for students to begin to understand arithmetic with rational and irrational numbers they need to understand that 16×3, MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaaIXaGaaGOnaaWcbeaakiabgEna0oaakaaabaGaaG4maaWcbeaakiaacYcaaaa@3B40@ and are the same, but 16+316+3. MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaaIXaGaaGOnaiabgUcaRiaaiodaaSqabaGccqGHGjsUdaGcaaqaaiaaigdacaaI2aaaleqaaOGaey4kaSYaaOaaaeaacaaIZaaaleqaaOGaaiOlaaaa@3F13@ Square roots are dealing with repeated multiplication, and the order in which numbers are multiplied does not affect the product.  However, multiplication and addition cannot be interchanged.

This is easily seen when dealing with the product and sum of the square root of perfect squares.  For example, with evaluation students can see that 4×9=4×9,4+94+9. MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaaI0aaaleqaaOGaey41aq7aaOaaaeaacaaI5aaaleqaaOGaeyypa0ZaaOaaaeaacaaI0aGaey41aqRaaGyoaaWcbeaakiaacYcacaaMc8+aaOaaaeaacaaI0aaaleqaaOGaey4kaSYaaOaaaeaacaaI5aaaleqaaOGaeyiyIK7aaOaaaeaacaaI0aGaey4kaSIaaGyoaaWcbeaakiaac6caaaa@4885@ 

Since 48=16×3, MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaaI0aGaaGioaaWcbeaakiabg2da9maakaaabaGaaGymaiaaiAdaaSqabaGccqGHxdaTdaGcaaqaaiaaiodaaSqabaGccaGGSaaaaa@3DEB@ and because the square root of sixteen is four, 48=4×3. MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaaI0aGaaGioaaWcbeaakiabg2da9iaaisdacqGHxdaTdaGcaaqaaiaaiodaaSqabaGccaGGUaaaaa@3D0B@ However, in Algebra we rarely use the symbol × to denote multiplication because it is too easily confused with the variable x.  So instead, we place “things,” next to one another to denote multiplication.  Thus, we write 48=43. MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaaI0aGaaGioaaWcbeaakiabg2da9iaaisdadaGcaaqaaiaaiodaaSqabaGccaGGUaaaaa@3AF4@ 

This is fully simplified because three, the radicand, does not contain a square number as a factor.  Further, three is a prime number, because it only has two factors, one and itself. 

It is very important that students see that “four MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuyTjMCPfgaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A8C@ root three,” squared is forty-eight.  This involves arithmetic between rational and irrational numbers, which is something they likely do not understand.

They need to understand that 43 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinamaakaaabaGaaG4maaWcbeaaaaa@378D@ cannot be written more accurately.  A calculator can give a decimal approximation, but the problem with approximations is the inaccuracies in approximations become larger as more computation is done with them.  Thus, for accuracy, it is often best to not approximate a number like the square root of three.

Because 43 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinamaakaaabaGaaG4maaWcbeaaaaa@378D@ cannot be simplified, then (43)2, MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaaI0aWaaOaaaeaacaaIZaaaleqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaaiilaaaa@3AC3@ needs some special attention. 

(43)2=43×43 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaaI0aWaaOaaaeaacaaIZaaaleqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaGinamaakaaabaGaaG4maaWcbeaakiabgEna0kaaisdadaGcaaqaaiaaiodaaSqabaaaaa@4066@ 

Of course 43 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinamaakaaabaGaaG4maaWcbeaaaaa@378D@ is the same as 4×3. MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiabgEna0oaakaaabaGaaG4maaWcbeaakiaac6caaaa@3A60@  So,

43×43=4×3×4×3. MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinamaakaaabaGaaG4maaWcbeaakiabgEna0kaaisdadaGcaaqaaiaaiodaaSqabaGccqGH9aqpcaaI0aGaey41aq7aaOaaaeaacaaIZaaaleqaaOGaey41aqRaaGinaiabgEna0oaakaaabaGaaG4maaWcbeaakiaac6caaaa@468B@ 

Make sure students understand that this is not a step, but simply a way to consider how to manipulate such an expression.

Because we can change the order of multiplication, and we can rewrite 4×4 as 16,

4×3×4×3=4×4×3×3. MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiabgEna0oaakaaabaGaaG4maaWcbeaakiabgEna0kaaisdacqGHxdaTdaGcaaqaaiaaiodaaSqabaGccqGH9aqpcaaI0aGaey41aqRaaGinaiabgEna0oaakaaabaGaaG4maaWcbeaakiabgEna0oaakaaabaGaaG4maaWcbeaakiaac6caaaa@4AB9@ 

Eventually, when exponential notation for square roots is introduced, students will understand another reason why square root of three times itself is the square root of nine. 

16×9. MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiAdacqGHxdaTdaGcaaqaaiaaiMdaaSqabaGccaGGUaaaaa@3B23@

The square root of nine is of course three.

16×3=48. MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiAdacqGHxdaTcaaIZaGaeyypa0JaaGinaiaaiIdacaGGUaaaaa@3D7E@

Students should know learn how to multiply irrational and rational numbers together.  Having them confirm their simplification of a radical expression is a great way to promote this understanding and skill. 

Here we have seen that 48=43, MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaaI0aGaaGioaaWcbeaakiabg2da9iaaisdadaGcaaqaaiaaiodaaSqabaGccaGGSaaaaa@3AF2@ because (43)2=48. MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaaI0aWaaOaaaeaacaaIZaaaleqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaGinaiaaiIdacaGGUaaaaa@3D4B@ 

This aligns with our second way of viewing square roots, “What squared is the radicand?”

Key Question: If ab3=k, MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaWGHbGaamOyamaaCaaaleqabaGaaG4maaaaaeqaaOGaeyypa0Jaam4AaiaacYcacaaMb8oaaa@3CF8@ what is k2? MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaCaaaleqabaGaaGOmaaaakiaac+daaaa@389D@ 

More Arithmetic with Irrationals: The last issue we are going to address with square roots is addition and subtraction.  To do so, it is advisable to have students discuss why they can add or subtract variables like x and 3x, or 2ab and ab, but they cannot add or subtract unlike terms.  The reason, “Because they’re not like terms,” is unacceptable here. 

The questions are:

Why is it incorrect to add or subtract terms that are unlike? 

Why can unlike terms be multiplied?

The answers deal with the order of operations and the relationship between addition and multiplication.  We can add 3x and 5x, because 3x is really x + x + x, and 5x is x + x + x + x + x.  So we are counting the same thing, so the total number of that thing grows.  However, 3x and 5y are different “things.”  While there are 8 total things, they’re not all the same. 

Multiplication is different.  It is repeated addition.  If we have 3x times 5y, that would be 3x groups of 5y, giving us 15xy.    Spend time chasing this with students, making sure they really understand as it will play an important role as more Algebra is introduced.

This all explains, with understanding, why 32+52=82, MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaakaaabaGaaGOmaaWcbeaakiabgUcaRiaaiwdadaGcaaqaaiaaikdaaSqabaGccqGH9aqpcaaI4aWaaOaaaeaacaaIYaaaleqaaOGaaiilaaaa@3D70@ and why 32+53, MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaakaaabaGaaGOmaaWcbeaakiabgUcaRiaaiwdadaGcaaqaaiaaiodaaSqabaGccaGGSaaaaa@3AC8@ cannot be added.  Further, 32×52=154(not simplified), MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaakaaabaGaaGOmaaWcbeaakiabgEna0kaaiwdadaGcaaqaaiaaikdaaSqabaGccqGH9aqpcaaIXaGaaGynamaakaaabaGaaGinaaWcbeaakiaaykW7caqGOaGaaeOBaiaab+gacaqG0bGaaeiiaiaabohacaqGPbGaaeyBaiaabchacaqGSbGaaeyAaiaabAgacaqGPbGaaeyzaiaabsgacaqGPaGaaiilaaaa@4F02@ and 32×53=156. MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqyccaaIZaWaaOaaaeaacaaIYaaaleqaaOGaey41aqRaaGynamaakaaabaGaaG4maaWcbeaakiabg2da9iaaigdacaaI1aWaaOaaaeaacaaI2aaaleqaaOGaaiOlaaaa@3FF4@

Summary:  When teaching square roots it is easy to resort to simple procedure, and allow students to revert to the simple procedures (that have no conceptual foundation) in order to get the right answers.  Your job is to challenge their understanding of these procedures, help students root their understanding in the concept. 

At the simplest, a square root is a way to write a number.  If taught through discussion and questioning, students can come away with a solid foundation in the subsets of the Real Numbers, factoring, what prime numbers are, how the order of operations respects how multiplication is repeated addition, as well as the students’ mathematical literacy.