Rational Exponents
In the last section we looked at some expressions
like, “What is the third root of twenty-seven, squared?” The math is kind of ugly looking.
27
2
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaaca
aIYaGaaG4namaaCaaaleqabaGaaGOmaaaaaeaacaaIZaaaaaaa@392A@
The procedures are clunky and it is very easy to lose
sight of the objective. What this
expression is asking is what number cubed is twenty-seven squared. You could always square the 27, to arrive at
729 and see if that is a perfect cube.
There is a much more elegant way to go about this type
of calculation. Turns out if we rewrite
this expression with a rational exponent, life gets easier.
27
2
3
=
27
2 / 3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaaca
aIYaGaaG4namaaCaaaleqabaGaaGOmaaaaaeaacaaIZaaaaOGaeyyp
a0JaaGOmaiaaiEdadaahaaWcbeqaaiaaikdacaGGVaGaaG4maaaaaa
a@3E10@
These two statements are the same. They ask the same question, what number cubed
is twenty-seven squared?
By now you should be familiar with perfect cubes and
squares. Hopefully you’re also familiar
with higher powers of 2 and 3, as well as a few others. For example, you should recognize that 625 is
5
4
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynamaaCa
aaleqabaGaaGinaaaakiaac6caaaa@385D@
If you don’t know that yet, a cheat sheet
might be helpful.
Let’s look at our expression again. If you notice that 27 is a perfect cube, then
you can rewrite it like this:
27
2 / 3
→
(
3
3
)
2 / 3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiE
dadaahaaWcbeqaaiaaikdacaGGVaGaaG4maaaakiabgkziUoaabmaa
baGaaG4mamaaCaaaleqabaGaaG4maaaaaOGaayjkaiaawMcaamaaCa
aaleqabaGaaGOmaiaac+cacaaIZaaaaaaa@4157@
Maybe you see what’s going to happen next, but if not,
we have a power raised to another here, we can multiply those exponents. Three times two-thirds is two. This becomes three squared.
(
3
3
)
2 / 3
→
3
2
= 9
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
aIZaWaaWbaaSqabeaacaaIZaaaaaGccaGLOaGaayzkaaWaaWbaaSqa
beaacaaIYaGaai4laiaaiodaaaGccqGHsgIRcaaIZaWaaWbaaSqabe
aacaaIYaaaaOGaeyypa0JaaGyoaaaa@40FA@
Not too bad! We
factor, writing the base of twenty-seven as an exponent with a power that
matches the denominator of the other exponent, multiply, reduce, done!
Let’s look at another.
Simplify:
625
3 / 4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaik
dacaaI1aWaaWbaaSqabeaacaaIZaGaai4laiaaisdaaaaaaa@3A8D@
We mentioned earlier that 625 was a power of 5, the
fourth power of five. That’s the key to
making these simple. Let’s rewrite 625
as a power of five.
(
5
4
)
3 / 4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
aI1aWaaWbaaSqabeaacaaI0aaaaaGccaGLOaGaayzkaaWaaWbaaSqa
beaacaaIZaGaai4laiaaisdaaaaaaa@3B8F@
We can multiply those exponents, giving us five-cubed,
or 125. Much cleaner than finding the
fourth root of six hundred and twenty-five cubed.
What about something that doesn’t work out so, well,
pretty? Something where the base cannot
be rewritten as an exponent that matches the denominator?
32
3 / 4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaaik
dadaahaaWcbeqaaiaaiodacaGGVaGaaGinaaaaaaa@39CB@
This is where proficiency and familiarity with powers
of two comes to play. Thirty-two is a
power of two, just not the fourth power, but the fifth.
(
2
5
)
3 / 4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
aIYaWaaWbaaSqabeaacaaI1aaaaaGccaGLOaGaayzkaaWaaWbaaSqa
beaacaaIZaGaai4laiaaisdaaaaaaa@3B8D@
If we multiplied these exponents together we end up
with something that isn’t so pretty,
2
15 / 4
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCa
aaleqabaGaaGymaiaaiwdacaGGVaGaaGinaaaakiaac6caaaa@3A87@
We could rewrite this by simplifying the
exponent, but there’s a better way. Consider
the following, and note that we broke the five twos into a group of four and
another group of one.
(
2
5
)
3 / 4
=
(
2
1
⋅
2
4
)
3 / 4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
aIYaWaaWbaaSqabeaacaaI1aaaaaGccaGLOaGaayzkaaWaaWbaaSqa
beaacaaIZaGaai4laiaaisdaaaGccqGH9aqpdaqadaqaaiaaikdada
ahaaWcbeqaaiaaigdaaaGccqGHflY1caaIYaWaaWbaaSqabeaacaaI
0aaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaGaai4laiaais
daaaaaaa@462A@
Now we’d have to multiply the exponents inside the
parenthesis by
¾
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa
aaaaaaaaWdbiaa=5laaaa@384E@
,
and will arrive at:
2
3 / 4
⋅
2
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCa
aaleqabaGaaG4maiaac+cacaaI0aaaaOGaeyyXICTaaGOmamaaCaaa
leqabaGaaG4maaaaaaa@3D08@
Notice that
2
3 / 4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCa
aaleqabaGaaG4maiaac+cacaaI0aaaaaaa@390E@
is irrational, so not much we can do with it,
but two cubed is eight. Let’s write the
rational number first, and rewrite that irrational number as a radical
expression:
8
2
3
4
, o r 8
8
4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGioamaake
aabaGaaGOmamaaCaaaleqabaGaaG4maaaaaeaacaaI0aaaaOGaaiil
aiaaykW7caaMc8Uaam4BaiaadkhacaaMc8UaaGPaVlaaiIdadaGcba
qaaiaaiIdaaSqaaiaaisdaaaaaaa@445B@
.
There’s an even easier way to think about these rational exponents. I'd like to introduce something called
Logarithmic Counting. For those who don't know what logarithms are, that
might sound scary.
Do you remember learning how to multiply by 5s...how you'd skip count?
(5, 10, 15, 20, ...) Logarithmic counting is the same way, except
with exponents. For example, by 2: 2, 4, 8, 16, 32, ... Well, what’s the fourth step of 2 when
logarithmically counting? It’s 16,
right?
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcaa@35F6@
Let’s look at
16
3 / 4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiA
dadaahaaWcbeqaaiaaiodacaGGVaGaaGinaaaaaaa@39CD@
. See the denominator of four? That means we’re looking for a fourth root, a
number times itself four times that equals 16.
The three, in the numerator, it says, what number is three of the four
steps on the way to sixteen?
2 4
8 16
Above is how we get to sixteen by multiplying a number
by itself four times. Do you see the
third step is eight?
Let’s see how our procedure looks:
Procedure 1:
16
3 / 4
=
(
2
4
)
3 / 4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiA
dadaahaaWcbeqaaiaaiodacaGGVaGaaGinaaaakiabg2da9maabmaa
baGaaGOmamaaCaaaleqabaGaaGinaaaaaOGaayjkaiaawMcaamaaCa
aaleqabaGaaG4maiaac+cacaaI0aaaaaaa@4072@
(
2
4
)
3 / 4
=
2
4
1
×
3
4
=
2
3
, o r 8.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
aIYaWaaWbaaSqabeaacaaI0aaaaaGccaGLOaGaayzkaaWaaWbaaSqa
beaacaaIZaGaai4laiaaisdaaaGccqGH9aqpcaaIYaWaaWbaaSqabe
aadaWcaaqaaiaaisdaaeaacaaIXaaaaiabgEna0oaalaaabaGaaG4m
aaqaaiaaisdaaaaaaOGaeyypa0JaaGOmamaaCaaaleqabaGaaG4maa
aakiaacYcacaaMc8UaaGPaVlaad+gacaWGYbGaaGPaVlaaykW7caaI
4aGaaiOlaaaa@4FAB@
Procedure 2:
16
3 / 4
=
16
3
4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiA
dadaahaaWcbeqaaiaaiodacaGGVaGaaGinaaaakiabg2da9maakeaa
baGaaGymaiaaiAdadaahaaWcbeqaaiaaiodaaaaabaGaaGinaaaaaa
a@3E10@
16
3
4
=
(
2
4
)
3
4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaaca
aIXaGaaGOnamaaCaaaleqabaGaaG4maaaaaeaacaaI0aaaaOGaeyyp
a0ZaaOqaaeaadaqadaqaaiaaikdadaahaaWcbeqaaiaaisdaaaaaki
aawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaabaGaaGinaaaaaaa@3F2C@
(
2
4
)
3
4
=
2
4
4
×
2
4
4
×
2
4
4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaada
qadaqaaiaaikdadaahaaWcbeqaaiaaisdaaaaakiaawIcacaGLPaaa
daahaaWcbeqaaiaaiodaaaaabaGaaGinaaaakiabg2da9maakeaaba
GaaGOmamaaCaaaleqabaGaaGinaaaaaeaacaaI0aaaaOGaey41aq7a
aOqaaeaacaaIYaWaaWbaaSqabeaacaaI0aaaaaqaaiaaisdaaaGccq
GHxdaTdaGcbaqaaiaaikdadaahaaWcbeqaaiaaisdaaaaabaGaaGin
aaaaaaa@479A@
2
4
4
×
2
4
4
×
2
4
4
= 2 × 2 × 2 , o r 8.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaaca
aIYaWaaWbaaSqabeaacaaI0aaaaaqaaiaaisdaaaGccqGHxdaTdaGc
baqaaiaaikdadaahaaWcbeqaaiaaisdaaaaabaGaaGinaaaakiabgE
na0oaakeaabaGaaGOmamaaCaaaleqabaGaaGinaaaaaeaacaaI0aaa
aOGaeyypa0JaaGOmaiabgEna0kaaikdacqGHxdaTcaaIYaGaaiilai
aaykW7caaMc8Uaam4BaiaadkhacaaMc8UaaGPaVlaaykW7caaI4aGa
aiOlaaaa@54D0@
The most elegant way is to realize the 16 is the
fourth power of 2, and the fraction
¾
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa
aaaaaaaaWdbiaa=5laaaa@384E@
is asking us for the third entry. What is 3/4s
of the way to 16 when multiplying (exponents)?
Let’s look at
625
2 / 3
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaik
dacaaI1aWaaWbaaSqabeaacaaIYaGaai4laiaaiodaaaGccaGGUaaa
aa@3B47@
Let’s do this three ways, first with radical
notation, then by evaluating the base and simplifying the exponents, and then
by thinking about what is two thirds of the way to 625.
Now
this is going to be a tricky problem because 625 is NOT a perfect cube. It is the fourth power of 5, though, which
means that 125 (which is five-cubed) times five is 625.
Radical Notation:
625
2 / 3
=
625
2
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaik
dacaaI1aWaaWbaaSqabeaacaaIYaGaai4laiaaiodaaaGccqGH9aqp
daGcbaqaaiaaiAdacaaIYaGaaGynamaaCaaaleqabaGaaGOmaaaaae
aacaaIZaaaaaaa@3F8C@
625
2
3
=
(
5
4
)
2
3
→
5
8
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaaca
aI2aGaaGOmaiaaiwdadaahaaWcbeqaaiaaikdaaaaabaGaaG4maaaa
kiabg2da9maakeaabaWaaeWaaeaacaaI1aWaaWbaaSqabeaacaaI0a
aaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqaaiaaioda
aaGccqGHsgIRdaGcbaqaaiaaiwdadaahaaWcbeqaaiaaiIdaaaaaba
GaaG4maaaaaaa@445D@
5
8
3
=
5
3
×
5
3
×
5
2
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaaca
aI1aWaaWbaaSqabeaacaaI4aaaaaqaaiaaiodaaaGccqGH9aqpdaGc
baqaaiaaiwdadaahaaWcbeqaaiaaiodaaaGccqGHxdaTcaaI1aWaaW
baaSqabeaacaaIZaaaaOGaey41aqRaaGynamaaCaaaleqabaGaaGOm
aaaaaeaacaaIZaaaaaaa@438B@
5
3
×
5
3
×
5
2
3
= 5 × 5
25
3
, o r 25
25
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaaca
aI1aWaaWbaaSqabeaacaaIZaaaaOGaey41aqRaaGynamaaCaaaleqa
baGaaG4maaaakiabgEna0kaaiwdadaahaaWcbeqaaiaaikdaaaaaba
GaaG4maaaakiabg2da9iaaiwdacqGHxdaTcaaI1aWaaOqaaeaacaaI
YaGaaGynaaWcbaGaaG4maaaakiaacYcacaaMc8UaaGPaVlaaykW7ca
WGVbGaamOCaiaaykW7caaMc8UaaGPaVlaaikdacaaI1aWaaOqaaeaa
caaIYaGaaGynaaWcbaGaaG4maaaaaaa@56AD@
Pretty
ugly!
Exponential Notation:
625
2 / 3
=
(
5
4
)
2 / 3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaik
dacaaI1aWaaWbaaSqabeaacaaIYaGaai4laiaaiodaaaGccqGH9aqp
daqadaqaaiaaiwdadaahaaWcbeqaaiaaisdaaaaakiaawIcacaGLPa
aadaahaaWcbeqaaiaaikdacaGGVaGaaG4maaaaaaa@4131@
(
5
4
)
2 / 3
=
(
5
3
×
5
1
)
2 / 3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
aI1aWaaWbaaSqabeaacaaI0aaaaaGccaGLOaGaayzkaaWaaWbaaSqa
beaacaaIYaGaai4laiaaiodaaaGccqGH9aqpdaqadaqaaiaaiwdada
ahaaWcbeqaaiaaiodaaaGccqGHxdaTcaaI1aWaaWbaaSqabeaacaaI
XaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaGaai4laiaaio
daaaaaaa@45FA@
(
5
3
×
5
1
)
2 / 3
=
5
2
×
5
2 / 3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
aI1aWaaWbaaSqabeaacaaIZaaaaOGaey41aqRaaGynamaaCaaaleqa
baGaaGymaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaiaac+
cacaaIZaaaaOGaeyypa0JaaGynamaaCaaaleqabaGaaGOmaaaakiab
gEna0kaaiwdadaahaaWcbeqaaiaaikdacaGGVaGaaG4maaaaaaa@4745@
5
2
×
5
2 / 3
= 25 ×
5
2 / 3
, o r 25
25
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynamaaCa
aaleqabaGaaGOmaaaakiabgEna0kaaiwdadaahaaWcbeqaaiaaikda
caGGVaGaaG4maaaakiabg2da9iaaikdacaaI1aGaey41aqRaaGynam
aaCaaaleqabaGaaGOmaiaac+cacaaIZaaaaOGaaiilaiaaykW7caaM
c8UaaGPaVlaad+gacaWGYbGaaGPaVlaaykW7caaMc8UaaGOmaiaaiw
dadaGcbaqaaiaaikdacaaI1aaaleaacaaIZaaaaaaa@5447@
A little better, but still a few sticky points.
Now our third method.
625
2 / 3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaik
dacaaI1aWaaWbaaSqabeaacaaIYaGaai4laiaaiodaaaaaaa@3A8B@
asks, “What is two thirds of the way to 625,
for a cubed number?”
This 625 isn’t cubed, but a factor of it is.
625
2 / 3
=
(
125 × 5
)
2 / 3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaik
dacaaI1aWaaWbaaSqabeaacaaIYaGaai4laiaaiodaaaGccqGH9aqp
daqadaqaaiaaigdacaaIYaGaaGynaiabgEna0kaaiwdaaiaawIcaca
GLPaaadaahaaWcbeqaaiaaikdacaGGVaGaaG4maaaaaaa@4489@
This could also be written as:
125
2 / 3
×
5
2 / 3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaik
dacaaI1aWaaWbaaSqabeaacaaIYaGaai4laiaaiodaaaGccqGHxdaT
caaI1aWaaWbaaSqabeaacaaIYaGaai4laiaaiodaaaaaaa@3FBF@
I am certain that 5 to the two-thirds power is
irrational because, well, five is a prime number. Let’s deal with the other portion.
The
steps to 125 are: 5 25
125
The
second step is 25.
125
2 / 3
×
5
2 / 3
= 25 ×
5
2 / 3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaik
dacaaI1aWaaWbaaSqabeaacaaIYaGaai4laiaaiodaaaGccqGHxdaT
caaI1aWaaWbaaSqabeaacaaIYaGaai4laiaaiodaaaGccqGH9aqpca
aIYaGaaGynaiabgEna0kaaiwdadaahaaWcbeqaaiaaikdacaGGVaGa
aG4maaaaaaa@4779@
To summarize the denominator of the rational exponent
is the index of a radical expression.
The numerator is an exponent for the base. How you tackle the expressions is entirely up
to you, but I would suggest proficiency in multiple methods as sometimes the math
lends itself nicely to one method but not another.
Practice Problems:
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcaa@35F6@
Simplify the following:
1 .
(
16
x
16
)
3 / 4
2.
128
5 / 6
3.
125
3
5
4.
32
3 / 5
5.
(
81
x
27
)
2 / 3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaqGtb
GaaeyAaiaab2gacaqGWbGaaeiBaiaabMgacaqGMbGaaeyEaiaabcca
caqG0bGaaeiAaiaabwgacaqGGaGaaeOzaiaab+gacaqGSbGaaeiBai
aab+gacaqG3bGaaeyAaiaab6gacaqGNbGaaeOoaaqaaiaabgdacaqG
UaGaaeiiaiaabccadaqadaqaaiaaigdacaaI2aGaamiEamaaCaaale
qabaGaaGymaiaaiAdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaa
iodacaGGVaGaaGinaaaaaOqaaaqaaaqaaiaaikdacaGGUaGaaGPaVl
aaykW7caaMc8UaaGymaiaaikdacaaI4aWaaWbaaSqabeaacaaI1aGa
ai4laiaaiAdaaaaakeaaaeaaaeaaaeaacaaIZaGaaiOlaiaaykW7ca
aMc8UaaGPaVpaakeaabaGaaGymaiaaikdacaaI1aWaaWbaaSqabeaa
caaIZaaaaaqaaiaaiwdaaaaakeaaaeaaaeaaaeaacaaI0aGaaiOlai
aaykW7caaMc8UaaGPaVlaaiodacaaIYaWaaWbaaSqabeaacaaIZaGa
ai4laiaaiwdaaaaakeaaaeaaaeaaaeaacaaI1aGaaiOlaiaaykW7ca
aMc8+aaeWaaeaacaaI4aGaaGymaiaadIhadaahaaWcbeqaaiaaikda
caaI3aaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaGaai4lai
aaiodaaaaaaaa@80AF@
VIDEO