1.7.2 square root operations continued

Square Roots
Multiplication and Division

At some point square roots should no longer be considered an operation but rather the most efficient way to express a number. For example, the best way to write one hundred trillion is 1× 10 14 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgE na0kaaigdacaaIWaWaaWbaaSqabeaacaaIXaGaaGinaaaaaaa@3BE4@ . The best way to express the number times itself that is two is as 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aIYaaaleqaaOGaaiOlaaaa@378A@

That provides insight when we consider multiplying a rational number and an irrational number together. It is not confusing for some irrational numbers, like π. Nobody confused 3π because we understand that symbol is the best way to write the number. There’s not a way to rewrite multiples of π other than by writing the multiple in front.

However, 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaka aabaGaaGOmaaWcbeaaaaa@378B@ is often written as 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aI2aaaleqaaaaa@36D2@ . There are reasons explained by the order of operations which tell us why this is false, but understanding what the square root of two is perhaps offers the simplest insight.

2 1.414 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aIYaaaleqaaOGaeyisISRaaGymaiaac6cacaaI0aGaaGymaiaaisda aaa@3C2D@

3 2 = 2 + 2 + 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaka aabaGaaGOmaaWcbeaakiabg2da9maakaaabaGaaGOmaaWcbeaakiab gUcaRmaakaaabaGaaGOmaaWcbeaakiabgUcaRmaakaaabaGaaGOmaa Wcbeaaaaa@3CF8@

3 2 1.414+1.414+1.414 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaka aabaGaaGOmaaWcbeaakiabgIKi7kaaigdacaGGUaGaaGinaiaaigda caaI0aGaey4kaSIaaGymaiaac6cacaaI0aGaaGymaiaaisdacqGHRa WkcaaIXaGaaiOlaiaaisdacaaIXaGaaGinaaaa@45F6@

4.242

The square root of six is approximately 2.449. Not the same thing at all.

 

The following, however, is true:

2 × 3 = 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aIYaaaleqaaOGaey41aq7aaOaaaeaacaaIZaaaleqaaOGaeyypa0Za aOaaaeaacaaI2aaaleqaaaaa@3BB2@

and

2×3 = 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aIYaGaey41aqRaaG4maaWcbeaakiabg2da9maakaaabaGaaGOnaaWc beaaaaa@3B8C@ .

The following generalization can be used. Sometimes it is best to write things one way versus another, and it is up to you to decide if rewriting an expression offers insight.

ab = a b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca WGHbGaamOyaaWcbeaakiabg2da9maakaaabaGaamyyaaWcbeaakiab gwSixpaakaaabaGaamOyaaWcbeaaaaa@3D46@

If two numbers are both square roots you can multiply their radicands together. But you cannot multiply the radicand of a square root with rational number like we saw above.

Division is a little more nuanced, but only when your denominator is a fraction.

This generalization is true for division:

a b = a b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaada WcaaqaaiaadggaaeaacaWGIbaaaaWcbeaakiabg2da9maalaaabaWa aOaaaeaacaWGHbaaleqaaaGcbaWaaOaaaeaacaWGIbaaleqaaaaaaa a@3B1C@

For example:

8 4 = 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaada GcaaqaaiaaiIdaaSqabaaakeaadaGcaaqaaiaaisdaaSqabaaaaOGa eyypa0ZaaOaaaeaacaaIYaaaleqaaOGaaiOlaaaa@3A6A@

This can be calculated two ways.

8 4 = 8 4 = 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaada GcaaqaaiaaiIdaaSqabaaakeaadaGcaaqaaiaaisdaaSqabaaaaOGa eyypa0ZaaOaaaeaadaWcaaqaaiaaiIdaaeaacaaI0aaaaaWcbeaaki abg2da9maakaaabaGaaGOmaaWcbeaakiaac6caaaa@3D25@

or

8 4 = 2 2 2 = 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaada GcaaqaaiaaiIdaaSqabaaakeaadaGcaaqaaiaaisdaaSqabaaaaOGa eyypa0ZaaSaaaeaacaaIYaWaaOaaaeaacaaIYaaaleqaaaGcbaGaaG OmaaaacqGH9aqpdaGcaaqaaiaaikdaaSqabaGccaGGUaaaaa@3DD9@

But you cannot divide rational numbers into the radicand, or the radicand of a square root into a rational number. Remember, square roots, when simplified, are the most efficient way of writing irrational numbers. If we used k to represent the square root of two, these types of confusing things would not be happening.


Nobody would confuse what is happening with
6 k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI2aaabaGaam4Aaaaaaaa@37B7@ . We simply cannot evaluate that because 6 and k do not have common factors. When k is written as the square root of two, sometimes people just see a 2 and reduce.

The only issue with division of square roots occurs if you end up with a square root in the denominator.

5 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI1aaabaWaaOaaaeaacaaIYaaaleqaaaaaaaa@379D@

Denominators must be rational and the square root of two is irrational. However, there’s an easy fix. Remember that 2 × 2 = 4 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aIYaaaleqaaOGaey41aq7aaOaaaeaacaaIYaaaleqaaOGaeyypa0Za aOaaaeaacaaI0aaaleqaaOGaaiilaaaa@3C69@ and 4 =2. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aI0aaaleqaaOGaeyypa0JaaGOmaiaac6caaaa@394E@ It is also true that:

2 2 =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaada GcaaqaaiaaikdaaSqabaaakeaadaGcaaqaaiaaikdaaSqabaaaaOGa eyypa0JaaGymaaaa@398A@ .

To Rationalize the Denominator, which means make the denominator a rational number, we just multiply as follows:

5 2 2 2 = 5 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI1aaabaWaaOaaaeaacaaIYaaaleqaaaaakiabgwSixpaalaaabaWa aOaaaeaacaaIYaaaleqaaaGcbaWaaOaaaeaacaaIYaaaleqaaaaaki abg2da9maalaaabaGaaGynamaakaaabaGaaGOmaaWcbeaaaOqaaiaa ikdaaaaaaa@3F35@

Sometimes we end up with something like this:

5 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI1aaabaGaaG4mamaakaaabaGaaGOmaaWcbeaaaaaaaa@385A@

Three is a rational number and is perfectly okay in the denominator. If you multiply by the fraction 3 2 3 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIZaWaaOaaaeaacaaIYaaaleqaaaGcbaGaaG4mamaakaaabaGaaGOm aaWcbeaaaaGccaGGSaaaaa@39F3@ you can still get the simplified equivalent, but you’ll have extra reducing to do at the end. Instead, just multiply by the irrational portion.

5 3 2 2 2 = 5 2 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI1aaabaGaaG4mamaakaaabaGaaGOmaaWcbeaaaaGccqGHflY1daWc aaqaamaakaaabaGaaGOmaaWcbeaaaOqaamaakaaabaGaaGOmaaWcbe aaaaGccqGH9aqpdaWcaaqaaiaaiwdadaGcaaqaaiaaikdaaSqabaaa keaacaaI2aaaaaaa@3FF6@ .

In summary, to divide or multiply with square roots, you can multiply or divide the radicands. However, if you’re multiplying or dividing rational numbers and square roots, you cannot combine the radicands and the rational numbers.

 

 

 

 

 

 

 

 

Practice Problems:

 

Perform the indicated operations:

1.( 5 7 )( 3 14 ) 2.( 15 )( 3 ) 3. 3 2 8 4. 5 3 5. 3 8 2 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaaIXa GaaiOlaiaaykW7caaMc8UaaGPaVpaabmaabaGaaGynamaakaaabaGa aG4naaWcbeaaaOGaayjkaiaawMcaamaabmaabaGaaG4mamaakaaaba GaaGymaiaaisdaaSqabaaakiaawIcacaGLPaaaaeaaaeaaaeaacaaI YaGaaiOlaiaaykW7caaMc8+aaeWaaeaadaGcaaqaaiaaigdacaaI1a aaleqaaaGccaGLOaGaayzkaaWaaeWaaeaadaGcaaqaaiaaiodaaSqa baaakiaawIcacaGLPaaaaeaaaeaaaeaacaaIZaGaaiOlaiaaykW7ca aMc8+aaSaaaeaacaaIZaWaaOaaaeaacaaIYaaaleqaaaGcbaWaaOaa aeaacaaI4aaaleqaaaaaaOqaaaqaaaqaaiaaisdacaGGUaGaaGPaVl aaykW7caaMc8+aaSaaaeaadaGcaaqaaiaaiwdaaSqabaaakeaadaGc aaqaaiaaiodaaSqabaaaaaGcbaaabaaabaaabaGaaGynaiaac6caca aMc8UaaGPaVpaalaaabaGaaG4maaqaamaakaaabaGaaGioaaWcbeaa aaGccqGHflY1daWcaaqaamaakaaabaGaaGOmaaWcbeaaaOqaaiaaiA daaaaaaaa@6678@