Exponents Part 1
Reading Math
One of the biggest
things to understand about math is how it is written. The spatial arrangement of characters is syntax. Syntax, in English, refers to the arrangements
of words to convey meaning.
Exponents are just a
way of writing repeated multiplication.
If we are multiplying a number by itself repeatedly, we can use an
exponent to tell how many times the number is being multiplied. That’s it.
Nothing tricky exists with exponents, no new operations or concepts to
tackle. If you’re familiar with
multiplication and its properties, exponents should be accessible.
That said, it is not
without its pitfalls. A balance between conceptual
understanding and procedural short-cuts is needed to avoid those pitfalls. The only way to strike that balance is
through a careful progression of exercises and examples. An answer-getting mentality will lead to big
troubles with exponents. People wishing
to learn how exponents work must seek understanding.
Let’s establish some
facts that will come into play with this first part of exponents.
1.
Exponents are repeated multiplication
2.
Multiplication
is repeated addition
3.
Addition is “skip”
counting
To simplify simple
expressions with exponents you only need to know a few short-cuts, but to
recall and understand, we need more.
These facts are important.
With an exponential
expression we have a base, the number being multiplied by itself, and the
exponent, the small number on the top right of the base which describes how
many times the base is being multiplied by itself.
a
5
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa
aaleqabaGaaGynaaaaaaa@37C9@
The number a is the base. We don’t know what a is other than it is a number.
It’s not a big deal that we don’t know exactly what number it is, we
still know things about this expression.
Five is the exponent, which
means there are five a ’s, all
multiplying together, like this:
a ⋅ a ⋅ a ⋅ a ⋅ a .
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgw
SixlaadggacqGHflY1caWGHbGaeyyXICTaamyyaiabgwSixlaadgga
caGGUaaaaa@444F@
Something to keep in
mind is that this expression equals another number. Since we don’t know what a is, we cannot find out exactly what it is, but we do know it’s a
perfect 5th power number, like 32.
See, 25 = 32.
What if we had another number
multiplying with a 5 , like
this:
a
5
⋅
b
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa
aaleqabaGaaGynaaaakiabgwSixlaadkgadaahaaWcbeqaaiaaioda
aaaaaa@3BEE@
If we write this out,
without the exponents we see we have 5 a ’s
and 3 b ’s, all multiplying together. We don’t know what a or b equals, but we do
know they’re multiplying so we could change the order of multiplication
(commutative property) or group them together in anyway we wish (associative
property) without changing the value.
a
5
⋅
b
3
= a ⋅ a ⋅ a ⋅ a ⋅ a ⋅ b ⋅ b ⋅ b
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa
aaleqabaGaaGynaaaakiabgwSixlaadkgadaahaaWcbeqaaiaaioda
aaGccqGH9aqpcaWGHbGaeyyXICTaamyyaiabgwSixlaadggacqGHfl
Y1caWGHbGaeyyXICTaamyyaiabgwSixlaadkgacqGHflY1caWGIbGa
eyyXICTaamOyaaaa@5437@
And these would be the same:
(
a ⋅ a
) (
a ⋅ a ⋅ a
) (
b ⋅ b ⋅ b
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
WGHbGaeyyXICTaamyyaaGaayjkaiaawMcaamaabmaabaGaamyyaiab
gwSixlaadggacqGHflY1caWGHbaacaGLOaGaayzkaaWaaeWaaeaaca
WGIbGaeyyXICTaamOyaiabgwSixlaadkgaaiaawIcacaGLPaaaaaa@4D37@
(
a ⋅ a
) [
(
a ⋅ a ⋅ a
) (
b ⋅ b ⋅ b
) ]
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
WGHbGaeyyXICTaamyyaaGaayjkaiaawMcaamaadmaabaWaaeWaaeaa
caWGHbGaeyyXICTaamyyaiabgwSixlaadggaaiaawIcacaGLPaaada
qadaqaaiaadkgacqGHflY1caWGIbGaeyyXICTaamOyaaGaayjkaiaa
wMcaaaGaay5waiaaw2faaaaa@4F29@
(
a ⋅ a
)
[
a b ]
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
WGHbGaeyyXICTaamyyaaGaayjkaiaawMcaamaadmaabaGaamyyaiaa
dkgaaiaawUfacaGLDbaadaahaaWcbeqaaiaaiodaaaaaaa@403F@
a
2
[
a b ]
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa
aaleqabaGaaGOmaaaakmaadmaabaGaamyyaiaadkgaaiaawUfacaGL
DbaadaahaaWcbeqaaiaaiodaaaaaaa@3C79@
This is true because
the brackets group together the a and
b, making them both the base. The brackets put them together. The base is ab , and the exponent is 3. This
means we have ab multiplied by itself
three times.
Keep in mind, these are
steps but exploring how exponents work to help you learn to read the math for
the intended meaning behind the spatial arrangement of bases, parenthesis and
exponents.
Now, the bracketed expression
above is different than ab 3 ,
which is
a ⋅ b ⋅ b ⋅ b
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgw
SixlaadkgacqGHflY1caWGIbGaeyyXICTaamOyaaaa@4070@
.
(
a b
)
3
≠ a
b
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
WGHbGaamOyaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaakiab
gcMi5kaadggacaWGIbWaaWbaaSqabeaacaaIZaaaaaaa@3EBF@
Let’s expand these exponents and see why this is:
(
a b
)
3
≠ a
b
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
WGHbGaamOyaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaakiab
gcMi5kaadggacaWGIbWaaWbaaSqabeaacaaIZaaaaaaa@3EBF@
Write out the base ab times itself three times:
(
a b
) (
a b
) (
a b
) ≠ a ⋅ b ⋅ b ⋅ b
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
WGHbGaamOyaaGaayjkaiaawMcaamaabmaabaGaamyyaiaadkgaaiaa
wIcacaGLPaaadaqadaqaaiaadggacaWGIbaacaGLOaGaayzkaaGaey
iyIKRaamyyaiabgwSixlaadkgacqGHflY1caWGIbGaeyyXICTaamOy
aaaa@4C39@
The commutative property of multiplication allows us
to rearrange the order in which we multiply the a ’s and b ’s.
a ⋅ a ⋅ a ⋅ b ⋅ b ⋅ b ≠ a ⋅ b ⋅ b ⋅ b
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgw
SixlaadggacqGHflY1caWGHbGaeyyXICTaamOyaiabgwSixlaadkga
cqGHflY1caWGIbGaeyiyIKRaamyyaiabgwSixlaadkgacqGHflY1ca
WGIbGaeyyXICTaamOyaaaa@5310@
Rewriting this repeated multiplication we get:
a
3
b
3
≠ a
b
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa
aaleqabaGaaG4maaaakiaadkgadaahaaWcbeqaaiaaiodaaaGccqGH
GjsUcaWGHbGaamOyamaaCaaaleqabaGaaG4maaaaaaa@3E2A@
The following, though, is true:
(
a
b
3
) = a
b
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
WGHbGaamOyamaaCaaaleqabaGaaG4maaaaaOGaayjkaiaawMcaaiab
g2da9iaadggacaWGIbWaaWbaaSqabeaacaaIZaaaaaaa@3DFE@
On the right, the a has only an exponent of 1. If you do not see an exponent written, it is
one. If we write it out we see:
(
a ⋅ b ⋅ b ⋅ b
) = a ⋅ b ⋅ b ⋅ b
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
WGHbGaeyyXICTaamOyaiabgwSixlaadkgacqGHflY1caWGIbaacaGL
OaGaayzkaaGaeyypa0JaamyyaiabgwSixlaadkgacqGHflY1caWGIb
GaeyyXICTaamOyaaaa@4D78@
In summary of this
first exploration, the base can be tricky to see. Parenthesis group things together. An exponent written outside the parenthesis
creates all of the terms inside the parenthesis as the base. But if numbers are multiplying, but not
grouped, and one has an exponent, the exponent only belongs to the number just
below it on the left. For example,
4
x
3
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaadI
hadaahaaWcbeqaaiaaiodaaaGccaGGSaaaaa@3956@
the four has an exponent of just one, while
the x is being cubed.
Consider:
(
x + 5
)
3
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
WG4bGaey4kaSIaaGynaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4m
aaaakiaac6caaaa@3BC4@
This means the base is x + 5 and it is multiplied by itself three times.
(
x + 5
)
3
= (
x + 5
) (
x + 5
) (
x + 5
)
(
x + 5
)
3
≠
x
3
+
5
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaqada
qaaiaadIhacqGHRaWkcaaI1aaacaGLOaGaayzkaaWaaWbaaSqabeaa
caaIZaaaaOGaeyypa0ZaaeWaaeaacaWG4bGaey4kaSIaaGynaaGaay
jkaiaawMcaamaabmaabaGaamiEaiabgUcaRiaaiwdaaiaawIcacaGL
PaaadaqadaqaaiaadIhacqGHRaWkcaaI1aaacaGLOaGaayzkaaaaba
WaaeWaaeaacaWG4bGaey4kaSIaaGynaaGaayjkaiaawMcaamaaCaaa
leqabaGaaG4maaaakiabgcMi5kaadIhadaahaaWcbeqaaiaaiodaaa
GccqGHRaWkcaaI1aWaaWbaaSqabeaacaaIZaaaaOGaaeiiaiaabcca
caqGGaaaaaa@55E5@
Repeated Multiplication Allows Us Some Short-Cuts
Consider the expression:
a
3
×
a
2
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeeaaaaaa6di
eB1vgapeGaamyya8aadaahaaWcbeqaaiaaiodaaaGccqGHxdaTqqa6
daaaaaGuLrgapiGaamyya8aadaahaaWcbeqaaiaaikdaaaGccaGGUa
aaaa@4153@
If we wrote this out,
we would have:
a ⋅ a ⋅ a × a ⋅ a
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeeaaaaaa6di
eB1vgapeGaamyyaiabgwSixlaadggacqGHflY1caWGHbWdaiabgEna
0cbbOpaaaaaasvgza8GacaWGHbGaeyyXICTaamyyaaaa@483B@
.
( Note: In math we don’t use colors to differentiate
between two things. A red a and a blue a
are the same. These are colored to help
us keep of track of what’s happening with each part of the expression .)
This is three a’ s multiplying with another two a ’s.
That means there are five a’ s
multiplying.
a
3
×
a
2
=
a
5
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeeaaaaaa6di
eB1vgapeGaamyya8aadaahaaWcbeqaaiaaiodaaaGccqGHxdaTqqa6
daaaaaGuLrgapiGaamyya8aadaahaaWcbeqaaiaaikdaaaGccqGH9a
qpcaWGHbWaaWbaaSqabeaacaaI1aaaaaaa@4379@
Before we generalize
this to find the short-cut, let us see something similar, but is a potential
pitfall.
a
3
×
b
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeeaaaaaa6di
eB1vgapeGaamyya8aadaahaaWcbeqaaiaaiodaaaGccqGHxdaTqqa6
daaaaaGuLrgapiGaamOya8aadaahaaWcbeqaaiaaikdaaaaaaa@4098@
If we write this out we get:
a ⋅ a ⋅ a × b ⋅ b
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeeaaaaaa6di
eB1vgapeGaamyyaiabgwSixlaadggacqGHflY1caWGHbWdaiabgEna
0cbbOpaaaaaasvgza8GacaWGIbGaeyyXICTaamOyaaaa@483D@
This would not be an
exponent of 5, in anyway. An exponent of
five means the base is being multiplied by itself five times. Here we have an a as a base, and three of those multiplying, and a b as a base, and two of those
multiplying. Not five of anything.
The common language is that
if the bases are the same we can add the exponents. This is a hand short-cut, but if you forget
where it comes from and why it is true, you’ll undoubtedly confuse it with some
of the other short-cuts that follow.
Short-Cut 1: If the bases are the same you can add the
exponents. This is true because
exponents are repeated multiplication and the associative property says that
the order in which you group things does not matter (when multiplying).
a
m
×
a
n
=
a
m + n
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa
aaleqabaGaamyBaaaakiabgEna0kaadggadaahaaWcbeqaaiaad6ga
aaGccqGH9aqpcaWGHbWaaWbaaSqabeaacaWGTbGaey4kaSIaamOBaa
aaaaa@410D@
The second short-cut
comes from groups and exponents.
(
a
3
)
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
WGHbWaaWbaaSqabeaacaaIZaaaaaGccaGLOaGaayzkaaWaaWbaaSqa
beaacaaIYaaaaaaa@3A43@
This means the base is a 3 , and it is being multiplied by itself.
a
3
×
a
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa
aaleqabaGaaG4maaaakiabgEna0kaadggadaahaaWcbeqaaiaaioda
aaaaaa@3BB8@
Our previous short cut said that if the bases are
the same, we can add the exponents because we are just adding how many of the
base is being multiplied by itself.
a
3
×
a
3
=
a
3 + 3
=
a
6
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa
aaleqabaGaaG4maaaakiabgEna0kaadggadaahaaWcbeqaaiaaioda
aaGccqGH9aqpcaWGHbWaaWbaaSqabeaacaaIZaGaey4kaSIaaG4maa
aakiabg2da9iaadggadaahaaWcbeqaaiaaiAdaaaaaaa@431A@
But this is not much of
a short cut. Let us look at the original
expression and the outcome and look for a pattern.
(
a
3
)
2
=
a
6
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
WGHbWaaWbaaSqabeaacaaIZaaaaaGccaGLOaGaayzkaaWaaWbaaSqa
beaacaaIYaaaaOGaeyypa0JaamyyamaaCaaaleqabaGaaGOnaaaaaa
a@3D26@
Short-Cut 2: A power raised to another is multiplied.
(
a
m
)
n
=
a
m × n
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
WGHbWaaWbaaSqabeaacaWGTbaaaaGccaGLOaGaayzkaaWaaWbaaSqa
beaacaWGUbaaaOGaeyypa0JaamyyamaaCaaaleqabaGaamyBaiabgE
na0kaad6gaaaaaaa@40CE@
Be careful here,
though:
a
(
b
3
c
2
)
5
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaabm
aabaGaamOyamaaCaaaleqabaGaaG4maaaakiaadogadaahaaWcbeqa
aiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaiwdaaaaaaa@3D08@
=
a
b
15
c
10
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaadk
gadaahaaWcbeqaaiaaigdacaaI1aaaaOGaam4yamaaCaaaleqabaGa
aGymaiaaicdaaaaaaa@3BFF@
Practice Problems
1.
x
4
⋅
x
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa
aaleqabaGaaGinaaaakiabgwSixlaadIhadaahaaWcbeqaaiaaikda
aaaaaa@3C18@
8.
(
5 x y
)
3
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
aI1aGaamiEaiaadMhaaiaawIcacaGLPaaadaahaaWcbeqaaiaaioda
aaaaaa@3B23@
2.
y
9
⋅ y
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaCa
aaleqabaGaaGyoaaaakiabgwSixlaadMhaaaa@3B36@
9.
(
8
m
4
)
2
⋅
m
3
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
aI4aGaamyBamaaCaaaleqabaGaaGinaaaaaOGaayjkaiaawMcaamaa
CaaaleqabaGaaGOmaaaakiabgwSixlaad2gadaahaaWcbeqaaiaaio
daaaaaaa@3F41@
3.
z
2
⋅ z ⋅
z
3
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaCa
aaleqabaGaaGOmaaaakiabgwSixlaadQhacqGHflY1caWG6bWaaWba
aSqabeaacaaIZaaaaaaa@3F64@
10.
(
3
x
5
)
3
(
3
2
x
7
)
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
aIZaGaamiEamaaCaaaleqabaGaaGynaaaaaOGaayjkaiaawMcaamaa
CaaaleqabaGaaG4maaaakmaabmaabaGaaG4mamaaCaaaleqabaGaaG
OmaaaakiaadIhadaahaaWcbeqaaiaaiEdaaaaakiaawIcacaGLPaaa
daahaaWcbeqaaiaaikdaaaaaaa@413A@
4.
(
x
5
)
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
WG4bWaaWbaaSqabeaacaaI1aaaaaGccaGLOaGaayzkaaWaaWbaaSqa
beaacaaIYaaaaaaa@3A5B@
11.
7
(
7
2
x
4
)
5
⋅
7
3
x
5
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4namaabm
aabaGaaG4namaaCaaaleqabaGaaGOmaaaakiaadIhadaahaaWcbeqa
aiaaisdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaiwdaaaGccq
GHflY1caaI3aWaaWbaaSqabeaacaaIZaaaaOGaamiEamaaCaaaleqa
baGaaGynaaaaaaa@42C5@
5.
(
y
4
)
6
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
WG5bWaaWbaaSqabeaacaaI0aaaaaGccaGLOaGaayzkaaWaaWbaaSqa
beaacaaI2aaaaaaa@3A5F@
12.
5
3
+
5
3
+
5
3
+
5
3
+
5
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynamaaCa
aaleqabaGaaG4maaaakiabgUcaRiaaiwdadaahaaWcbeqaaiaaioda
aaGccqGHRaWkcaaI1aWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG
ynamaaCaaaleqabaGaaG4maaaakiabgUcaRiaaiwdadaahaaWcbeqa
aiaaiodaaaaaaa@41F4@
6.
x
3
+
x
3
+
x
3
+
x
8
+
x
8
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa
aaleqabaGaaG4maaaakiabgUcaRiaadIhadaahaaWcbeqaaiaaioda
aaGccqGHRaWkcaWG4bWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaam
iEamaaCaaaleqabaGaaGioaaaakiabgUcaRiaadIhadaahaaWcbeqa
aiaaiIdaaaaaaa@4334@
13.
3
2
⋅ 9
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaCa
aaleqabaGaaGOmaaaakiabgwSixlaaiMdaaaa@3AB4@
7.
4
x
+
4
x
+
4
x
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinamaaCa
aaleqabaGaamiEaaaakiabgUcaRiaaisdadaahaaWcbeqaaiaadIha
aaGccqGHRaWkcaaI0aWaaWbaaSqabeaacaWG4baaaaaa@3D87@
14.
4
x
⋅
4
x
⋅
4
x
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinamaaCa
aaleqabaGaamiEaaaakiabgwSixlaaisdadaahaaWcbeqaaiaadIha
aaGccqGHflY1caaI0aWaaWbaaSqabeaacaWG4baaaaaa@4057@
VIDEO