Mathematical Operations and Square
Roots
Part 1
In this section we will
see why we can add things like
5
2
+ 3
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynamaaka
aabaGaaGOmaaWcbeaakiabgUcaRiaaiodadaGcaaqaaiaaikdaaSqa
baaaaa@3A0D@
but cannot add
things like
2
5
+ 2
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaka
aabaGaaGynaaWcbeaakiabgUcaRiaaikdadaGcaaqaaiaaiodaaSqa
baaaaa@3A0D@
. Later we will
see how multiplication and division work when radicals (square roots and such)
are involved.
Addition and Subtraction: Addition
is just repeated counting. The
expression
5
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynamaaka
aabaGaaGOmaaWcbeaaaaa@378D@
means
2
+
2
+
2
+
2
+
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca
aIYaaaleqaaOGaey4kaSYaaOaaaeaacaaIYaaaleqaaOGaey4kaSYa
aOaaaeaacaaIYaaaleqaaOGaey4kaSYaaOaaaeaacaaIYaaaleqaaO
Gaey4kaSYaaOaaaeaacaaIYaaaleqaaaaa@3DDA@
, and the expression
3
2
means
2
+
2
+
2
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaka
aabaGaaGOmaaWcbeaakiaabccacaqGTbGaaeyzaiaabggacaqGUbGa
ae4CaiaabccadaGcaaqaaiaaikdaaSqabaGccqGHRaWkdaGcaaqaai
aaikdaaSqabaGccqGHRaWkdaGcaaqaaiaaikdaaSqabaGccaGGUaaa
aa@4297@
So if we add those two expressions,
5
2
+ 3
2
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynamaaka
aabaGaaGOmaaWcbeaakiabgUcaRiaaiodadaGcaaqaaiaaikdaaSqa
baGccaGGSaaaaa@3AC7@
we get
8
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGioamaaka
aabaGaaGOmaaWcbeaaaaa@3790@
. Subtraction works the same way.
Consider the expression
2
5
+ 2
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaka
aabaGaaGynaaWcbeaakiabgUcaRiaaikdadaGcaaqaaiaaiodaaSqa
baaaaa@3A0D@
. This means
5
+
5
+
3
+
3
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca
aI1aaaleqaaOGaey4kaSYaaOaaaeaacaaI1aaaleqaaOGaey4kaSYa
aOaaaeaacaaIZaaaleqaaOGaey4kaSYaaOaaaeaacaaIZaaaleqaaO
GaaiOlaaaa@3CDB@
The square
root of five and the square root of three are different things, so the simplest
we can write that sum is
2
5
+ 2
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaka
aabaGaaGynaaWcbeaakiabgUcaRiaaikdadaGcaaqaaiaaiodaaSqa
baaaaa@3A0D@
.
A common way to describe
when square roots can or cannot be added (or subtracted) is, “If the radicands
are the same you add/subtract the number in front.” This is not a bad rule of thumb, but it
treats square roots as something other than numbers.
5 × 3 + 4 × 3 = 9 × 3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynaiabgE
na0kaaiodacqGHRaWkcaaI0aGaey41aqRaaG4maiabg2da9iaaiMda
cqGHxdaTcaaIZaaaaa@429B@
The above statement is true. Five groups of three and four groups of three
is nine groups of three.
5
3
+ 4
3
= 9
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynamaaka
aabaGaaG4maaWcbeaakiabgUcaRiaaisdadaGcaaqaaiaaiodaaSqa
baGccqGH9aqpcaaI5aWaaOaaaeaacaaIZaaaleqaaaaa@3CBB@
The above statement is also true because five groups
of the numbers squared that is three, plus four more groups of the same number
would be nine groups of that number.
However, the following
cannot be combined in such a fashion.
3 × 8 + 5 × 2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiabgE
na0kaaiIdacqGHRaWkcaaI1aGaey41aqRaaGOmaaaa@3E01@
While this can be calculated, we cannot add the two
terms together because the first portion is three
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa
aaaaaaaaWdbiaa=nbiaaa@37C3@
eights and the
second is five
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa
aaaaaaaaWdbiaa=nbiaaa@37C3@
twos.
3
8
+ 5
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaka
aabaGaaGioaaWcbeaakiabgUcaRiaaiwdadaGcaaqaaiaaikdaaSqa
baaaaa@3A13@
The same situation is happening here.
Common Mistake:
The following is
obviously wrong. A student learning this
level of math would be highly unlikely to make such a mistake.
7 × 2 + 9 × 2 = 16 × 4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4naiabgE
na0kaaikdacqGHRaWkcaaI5aGaey41aqRaaGOmaiabg2da9iaaigda
caaI2aGaey41aqRaaGinaaaa@4359@
Seven
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa
aaaaaaaaWdbiaa=nbiaaa@37C3@
twos and nine
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa
aaaaaaaaWdbiaa=nbiaaa@37C3@
twos makes a
total of sixteen
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa
aaaaaaaaWdbiaa=nbiaaa@37C3@
twos, not
sixteen
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa
aaaaaaaaWdbiaa=nbiaaa@37C3@
fours. You’re adding the number of twos you have together,
not the twos themselves. And yet, this
is a common thing done with square roots.
7
2
+ 9
2
= 16
4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4namaaka
aabaGaaGOmaaWcbeaakiabgUcaRiaaiMdadaGcaaqaaiaaikdaaSqa
baGccqGH9aqpcaaIXaGaaGOnamaakaaabaGaaGinaaWcbeaaaaa@3D79@
This is incorrect for the
same reason. The thing you are counting
does not change by counting it.
Explanation: Why can you add
5
2
+ 3
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynamaaka
aabaGaaGOmaaWcbeaakiabgUcaRiaaiodadaGcaaqaaiaaikdaaSqa
baaaaa@3A0D@
? Is that a
violation of the order of operations (PEMDAS)?
Clearly, the five and square root of two are multiplying, as are the
three and the square root of two. Why
does this work?
Multiplication is a
short-cut for repeated addition of one particular number. Since both terms are repeatedly adding the
same thing, we can combine them.
But if the things we are
repeatedly adding are not the same, we cannot add them together before multiplying.
What About Something Like This:
3
40
− 9
90
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaka
aabaGaaGinaiaaicdaaSqabaGccqGHsislcaaI5aWaaOaaaeaacaaI
5aGaaGimaaWcbeaaaaa@3B99@
?
Before claiming that this
expression cannot be simplified you must make sure the square roots are fully
simplified. It turns out that both of
these can be simplified.
3
40
− 9
90
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaka
aabaGaaGinaiaaicdaaSqabaGccqGHsislcaaI5aWaaOaaaeaacaaI
5aGaaGimaaWcbeaaaaa@3B99@
3 ⋅
4
⋅
10
− 9 ⋅
9
⋅
10
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiabgw
SixpaakaaabaGaaGinaaWcbeaakiabgwSixpaakaaabaGaaGymaiaa
icdaaSqabaGccqGHsislcaaI5aGaeyyXIC9aaOaaaeaacaaI5aaale
qaaOGaeyyXIC9aaOaaaeaacaaIXaGaaGimaaWcbeaaaaa@4681@
The dot symbol for
multiplication is written here to remind us that all of these numbers are being
multiplied.
3 ⋅
4
⋅
10
− 9 ⋅
9
⋅
10
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiabgw
SixpaakaaabaGaaGinaaWcbeaakiabgwSixpaakaaabaGaaGymaiaa
icdaaSqabaGccqGHsislcaaI5aGaeyyXIC9aaOaaaeaacaaI5aaale
qaaOGaeyyXIC9aaOaaaeaacaaIXaGaaGimaaWcbeaaaaa@4681@
3 ⋅ 2 ⋅
10
− 9 ⋅ 3 ⋅
10
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiabgw
SixlaaikdacqGHflY1daGcaaqaaiaaigdacaaIWaaaleqaaOGaeyOe
I0IaaGyoaiabgwSixlaaiodacqGHflY1daGcaaqaaiaaigdacaaIWa
aaleqaaaaa@462F@
6
10
− 27
10
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnamaaka
aabaGaaGymaiaaicdaaSqabaGccqGHsislcaaIYaGaaG4namaakaaa
baGaaGymaiaaicdaaSqabaaaaa@3C4B@
− 21
10
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG
OmaiaaigdadaGcaaqaaiaaigdacaaIWaaaleqaaaaa@39EB@
What About Something Like This:
7 + 7
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca
aI3aGaey4kaSIaaG4naaWcbeaaaaa@3876@
versus
7
+
7
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca
aI3aaaleqaaOGaey4kaSYaaOaaaeaacaaI3aaaleqaaOGaaiOlaaaa
@3957@
Notice that in the first
expression there is a group, the radical symbol groups the sevens
together. Since the operation is adding,
this becomes:
7 + 7
=
14
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca
aI3aGaey4kaSIaaG4naaWcbeaakiabg2da9maakaaabaGaaGymaiaa
isdaaSqabaaaaa@3B1A@
.
Since the square root of
fourteen cannot be simplified, we are done.
The other expression
becomes:
7
+
7
= 2
7
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca
aI3aaaleqaaOGaey4kaSYaaOaaaeaacaaI3aaaleqaaOGaeyypa0Ja
aGOmamaakaaabaGaaG4naaWcbeaakiaac6caaaa@3BFF@
Summary: If the radicals are the same number, the number in
front just describes how many of them there are. You can combine (add/subtract) them if they
are the same number. You are finished
when you have combined all of the like
terms together and all square roots are simplified.
Practice Problems:
Perform the indicated
operation.
1.
25
− 5
5
+ 5
2.
48
+ 3
3
3. −
75
+ 8
24
+
75
4.
200
+ 8
8
− 2
32
5. − 2
98
+ 16
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaaIXa
GaaiOlaiaaykW7caaMc8UaaGPaVpaakaaabaGaaGOmaiaaiwdaaSqa
baGccqGHsislcaaI1aWaaOaaaeaacaaI1aaaleqaaOGaey4kaSIaaG
ynaaqaaaqaaaqaaiaaikdacaGGUaGaaGPaVlaaykW7daGcaaqaaiaa
isdacaaI4aaaleqaaOGaey4kaSIaaG4mamaakaaabaGaaG4maaWcbe
aaaOqaaaqaaaqaaiaaiodacaGGUaGaaGPaVlaaykW7cqGHsisldaGc
aaqaaiaaiEdacaaI1aaaleqaaOGaey4kaSIaaGioamaakaaabaGaaG
OmaiaaisdaaSqabaGccqGHRaWkdaGcaaqaaiaaiEdacaaI1aaaleqa
aaGcbaaabaaabaGaaGinaiaac6cacaaMc8UaaGPaVpaakaaabaGaaG
OmaiaaicdacaaIWaaaleqaaOGaey4kaSIaaGioamaakaaabaGaaGio
aaWcbeaakiabgkHiTiaaikdadaGcaaqaaiaaiodacaaIYaaaleqaaa
GcbaaabaaabaGaaGynaiaac6cacaaMc8UaaGPaVlabgkHiTiaaikda
daGcaaqaaiaaiMdacaaI4aaaleqaaOGaey4kaSIaaGymaiaaiAdada
GcaaqaaiaaikdaaSqabaaaaaa@6F2E@
VIDEO