Square Roots
Multiplication and Division
At some point square
roots should no longer be considered an operation but rather the most efficient
way to express a number. For example,
the best way to write one hundred trillion is
1 ×
10
14
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgE
na0kaaigdacaaIWaWaaWbaaSqabeaacaaIXaGaaGinaaaaaaa@3BE4@
. The best way
to express the number times itself that is two is as
2
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca
aIYaaaleqaaOGaaiOlaaaa@378A@
That provides insight
when we consider multiplying a rational number and an irrational number
together. It is not confusing for some
irrational numbers, like π. Nobody
confused 3π because we understand that symbol is the best way to write the
number. There’s not a way to rewrite multiples of π other than by writing the
multiple in front.
However,
3
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaka
aabaGaaGOmaaWcbeaaaaa@378B@
is often
written as
6
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca
aI2aaaleqaaaaa@36D2@
. There are
reasons explained by the order of operations which tell us why this is false,
but understanding what the square root of two is perhaps offers the simplest
insight.
2
≈ 1.414
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca
aIYaaaleqaaOGaeyisISRaaGymaiaac6cacaaI0aGaaGymaiaaisda
aaa@3C2D@
3
2
=
2
+
2
+
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaka
aabaGaaGOmaaWcbeaakiabg2da9maakaaabaGaaGOmaaWcbeaakiab
gUcaRmaakaaabaGaaGOmaaWcbeaakiabgUcaRmaakaaabaGaaGOmaa
Wcbeaaaaa@3CF8@
3
2
≈ 1.414 + 1.414 + 1.414
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaka
aabaGaaGOmaaWcbeaakiabgIKi7kaaigdacaGGUaGaaGinaiaaigda
caaI0aGaey4kaSIaaGymaiaac6cacaaI0aGaaGymaiaaisdacqGHRa
WkcaaIXaGaaiOlaiaaisdacaaIXaGaaGinaaaa@45F6@
4.242
The square root of six is approximately 2.449. Not the same thing at all.
The following, however, is true:
2
×
3
=
6
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca
aIYaaaleqaaOGaey41aq7aaOaaaeaacaaIZaaaleqaaOGaeyypa0Za
aOaaaeaacaaI2aaaleqaaaaa@3BB2@
and
2 × 3
=
6
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca
aIYaGaey41aqRaaG4maaWcbeaakiabg2da9maakaaabaGaaGOnaaWc
beaaaaa@3B8C@
.
The following
generalization can be used. Sometimes it
is best to write things one way versus another, and it is up to you to decide
if rewriting an expression offers insight.
a b
=
a
⋅
b
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca
WGHbGaamOyaaWcbeaakiabg2da9maakaaabaGaamyyaaWcbeaakiab
gwSixpaakaaabaGaamOyaaWcbeaaaaa@3D46@
If two numbers are both
square roots you can multiply their radicands together. But you cannot multiply
the radicand of a square root with rational number like we saw above.
Division is a little more
nuanced, but only when your denominator is a fraction.
This generalization is
true for division:
a
b
=
a
b
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaada
WcaaqaaiaadggaaeaacaWGIbaaaaWcbeaakiabg2da9maalaaabaWa
aOaaaeaacaWGHbaaleqaaaGcbaWaaOaaaeaacaWGIbaaleqaaaaaaa
a@3B1C@
For example:
8
4
=
2
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaada
GcaaqaaiaaiIdaaSqabaaakeaadaGcaaqaaiaaisdaaSqabaaaaOGa
eyypa0ZaaOaaaeaacaaIYaaaleqaaOGaaiOlaaaa@3A6A@
This can be calculated two ways.
8
4
=
8
4
=
2
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaada
GcaaqaaiaaiIdaaSqabaaakeaadaGcaaqaaiaaisdaaSqabaaaaOGa
eyypa0ZaaOaaaeaadaWcaaqaaiaaiIdaaeaacaaI0aaaaaWcbeaaki
abg2da9maakaaabaGaaGOmaaWcbeaakiaac6caaaa@3D25@
or
8
4
=
2
2
2
=
2
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaada
GcaaqaaiaaiIdaaSqabaaakeaadaGcaaqaaiaaisdaaSqabaaaaOGa
eyypa0ZaaSaaaeaacaaIYaWaaOaaaeaacaaIYaaaleqaaaGcbaGaaG
OmaaaacqGH9aqpdaGcaaqaaiaaikdaaSqabaGccaGGUaaaaa@3DD9@
But you cannot divide
rational numbers into the radicand, or the radicand of a square root into a
rational number. Remember, square roots,
when simplified, are the most efficient way of writing irrational numbers. If we used k to represent the square root of two, these types of confusing
things would not be happening.
Nobody would confuse what is happening with
6
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aI2aaabaGaam4Aaaaaaaa@37B7@
. We simply
cannot evaluate that because 6 and k
do not have common factors. When k is written as the square root of two,
sometimes people just see a 2 and reduce.
The only issue with
division of square roots occurs if you end up with a square root in the
denominator.
5
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aI1aaabaWaaOaaaeaacaaIYaaaleqaaaaaaaa@379D@
Denominators must be
rational and the square root of two is irrational. However, there’s an easy
fix. Remember that
2
×
2
=
4
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca
aIYaaaleqaaOGaey41aq7aaOaaaeaacaaIYaaaleqaaOGaeyypa0Za
aOaaaeaacaaI0aaaleqaaOGaaiilaaaa@3C69@
and
4
= 2.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca
aI0aaaleqaaOGaeyypa0JaaGOmaiaac6caaaa@394E@
It is also true
that:
2
2
= 1
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaada
GcaaqaaiaaikdaaSqabaaakeaadaGcaaqaaiaaikdaaSqabaaaaOGa
eyypa0JaaGymaaaa@398A@
.
To Rationalize the Denominator, which means make the denominator a
rational number, we just multiply as follows:
5
2
⋅
2
2
=
5
2
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aI1aaabaWaaOaaaeaacaaIYaaaleqaaaaakiabgwSixpaalaaabaWa
aOaaaeaacaaIYaaaleqaaaGcbaWaaOaaaeaacaaIYaaaleqaaaaaki
abg2da9maalaaabaGaaGynamaakaaabaGaaGOmaaWcbeaaaOqaaiaa
ikdaaaaaaa@3F35@
Sometimes we end up with
something like this:
5
3
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aI1aaabaGaaG4mamaakaaabaGaaGOmaaWcbeaaaaaaaa@385A@
Three is a rational
number and is perfectly okay in the denominator. If you multiply by the fraction
3
2
3
2
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIZaWaaOaaaeaacaaIYaaaleqaaaGcbaGaaG4mamaakaaabaGaaGOm
aaWcbeaaaaGccaGGSaaaaa@39F3@
you can still
get the simplified equivalent, but you’ll have extra reducing to do at the
end. Instead, just multiply by the
irrational portion.
5
3
2
⋅
2
2
=
5
2
6
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aI1aaabaGaaG4mamaakaaabaGaaGOmaaWcbeaaaaGccqGHflY1daWc
aaqaamaakaaabaGaaGOmaaWcbeaaaOqaamaakaaabaGaaGOmaaWcbe
aaaaGccqGH9aqpdaWcaaqaaiaaiwdadaGcaaqaaiaaikdaaSqabaaa
keaacaaI2aaaaaaa@3FF6@
.
In summary, to divide or multiply
with square roots, you can multiply or divide the radicands. However, if you’re multiplying or dividing
rational numbers and square roots, you cannot combine the radicands and the
rational numbers.
Practice Problems:
Perform the indicated
operations:
1. (
5
7
) (
3
14
)
2. (
15
) (
3
)
3.
3
2
8
4.
5
3
5.
3
8
⋅
2
6
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaaIXa
GaaiOlaiaaykW7caaMc8UaaGPaVpaabmaabaGaaGynamaakaaabaGa
aG4naaWcbeaaaOGaayjkaiaawMcaamaabmaabaGaaG4mamaakaaaba
GaaGymaiaaisdaaSqabaaakiaawIcacaGLPaaaaeaaaeaaaeaacaaI
YaGaaiOlaiaaykW7caaMc8+aaeWaaeaadaGcaaqaaiaaigdacaaI1a
aaleqaaaGccaGLOaGaayzkaaWaaeWaaeaadaGcaaqaaiaaiodaaSqa
baaakiaawIcacaGLPaaaaeaaaeaaaeaacaaIZaGaaiOlaiaaykW7ca
aMc8+aaSaaaeaacaaIZaWaaOaaaeaacaaIYaaaleqaaaGcbaWaaOaa
aeaacaaI4aaaleqaaaaaaOqaaaqaaaqaaiaaisdacaGGUaGaaGPaVl
aaykW7caaMc8+aaSaaaeaadaGcaaqaaiaaiwdaaSqabaaakeaadaGc
aaqaaiaaiodaaSqabaaaaaGcbaaabaaabaaabaGaaGynaiaac6caca
aMc8UaaGPaVpaalaaabaGaaG4maaqaamaakaaabaGaaGioaaWcbeaa
aaGccqGHflY1daWcaaqaamaakaaabaGaaGOmaaWcbeaaaOqaaiaaiA
daaaaaaaa@6678@
VIDEO